Xiao-Min Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9526173/publications.pdf

Version: 2024-02-01

234 papers

8,067 citations

47 h-index

47006

84 g-index

236 all docs

236 docs citations

times ranked

236

2880 citing authors

#	Article	IF	CITATIONS
1	Magnetic-Field Effect in High-Order Above-Threshold Ionization. Physical Review Letters, 2022, 128, 023201.	7.8	15
2	Carrier-Envelope Phase-Dependent Strong-Field Excitation. Physical Review Letters, 2022, 128, 173201.	7.8	5
3	Deexcitation Dynamics of Muonic Atoms Revealed by High-Precision Spectroscopy of Electronic <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>K</mml:mi></mml:math> X Rays. Physical Review Letters, 2021, 127, 053001.	7.8	19
4	Ellipticity dependence of excitation and ionization of argon atoms by short-pulse infrared radiation. Physical Review A, 2020 , 102 , .	2.5	8
5	Theory of Subcycle Linear Momentum Transfer in Strong-Field Tunneling Ionization. Physical Review Letters, 2020, 125, 073202.	7.8	42
6	Observation of dynamic Stark resonances in strong-field excitation. Physical Review A, 2020, 101, .	2.5	18
7	Theory of bound-state coherences generated and probed by optical attosecond pulses. Physical Review A, 2020, 101, .	2.5	10
8	Routes to control Cooper minimum in high order harmonics generated in argon gas. New Journal of Physics, 2020, 22, 083031.	2.9	7
9	Theory of Subcycle Linear Momentum Transfer in Strong-Field Tunneling Ionization. , 2020, , .		O
10	Roadmap on photonic, electronic and atomic collision physics: I. Light–matter interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 171001.	1.5	52
11	Directional control of dissociative ionization by a two-colour laser field. EPJ Web of Conferences, 2019, 205, 09030.	0.3	0
12	Photoelectron angular distribution of atoms in pulsed XUV and IR fields. Physical Review A, 2019, 99, .	2.5	0
13	Coulomb effect on the dynamics of atoms in a strong elliptical laser field: Unification of the excitation and ionization. Physical Review A, $2019, 100, .$	2.5	6
14	$\mbox{\sc i>Ab initio}\sc /\mbox{\sc i>}$ multiscale simulation of high-order harmonic generation in solids. Physical Review A, 2018, 97, .	2.5	137
15	Electron correlations in the antiproton energy-loss distribution in He. Physical Review A, 2018, 98, .	2.5	9
16	Attosecond coherent control of oxygen dissociation by XUV-IR laser fields using three-dimensional momentum imaging. Physical Review A, 2018, 98, .	2.5	5
17	Revealing the role of electron-electron correlations by mapping dissociation of highly excited D2+ using ultrashort XUV pulses. Physical Review A, 2018, 97, .	2.5	5
18	Mapping and controlling ultrafast dynamics of highly excited <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn></mml:mn></mml:msub></mml:math> molecules by VUV-IR pump-probe schemes. Physical Review A, 2017, 95, .	2.5	10

#	Article	IF	CITATIONS
19	Energy straggling cross section for antiproton-atom collisions. Journal of Physics: Conference Series, 2017, 875, 092026.	0.4	О
20	Transition from nonsequential to sequential double ionization in many-electron systems. Physical Review A, 2017, 96, .	2.5	13
21	Measuring laser carrier-envelope-phase effects in the noble gases with an atomic hydrogen calibration standard. Physical Review A, 2017, 96, .	2.5	6
22	Observation of ionization enhancement in two-color circularly polarized laser fields. Physical Review A, 2017, 96, .	2.5	36
23	Sub-cycle directional control of the dissociative ionization of H ₂ in tailored femtosecond laser fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 172001.	1.5	14
24	Imaging and controlling proton motion in molecules. AIP Conference Proceedings, 2017, , .	0.4	0
25	Simulation of High Harmonic Generation in Solids. Journal of Physics: Conference Series, 2017, 875, 042007.	0.4	1
26	A three-dimensional time-dependent Schr \tilde{A} ¶dinger equation solver: an application to hydrogen atoms in an elliptical laser field. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 144004.	1.5	12
27	Precise and Accurate Measurements of Strong-Field Photoionization and a Transferable Laser Intensity Calibration Standard. Physical Review Letters, 2016, 117, 053001.	7.8	21
28	Controlling electron-ion rescattering in two-color circularly polarized femtosecond laser fields. Physical Review A, 2016, 93, .	2.5	100
29	Coherent control of the dissociation probability ofH2+in ï‰-3ï‰ two-color fields. Physical Review A, 2016, 93, .	2.5	20
30	The interaction of excited atoms and few-cycle laser pulses. Scientific Reports, 2016, 6, 34101.	3.3	6
31	Attosecond quantum-beat spectroscopy in helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 055601.	1.5	9
32	Coherent control of D ₂ /H ₂ dissociative ionization by a mid-infrared two-color laser field. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 025601.	1.5	36
33	Intensity dependence of the dissociative ionization of DCl in few-cycle laser fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 015601.	1.5	12
34	Controlling Atomic Photoabsorption by Intense Lasers in the Attosecond Time Domain. Springer Series on Atomic, Optical, and Plasma Physics, 2016, , 161-176.	0.2	0
35	Percent-level accuracy in measuring strong-field photoionization and laser intensity. , 2016, , .		0
36	Application of norm-conserving pseudopotentials to intense laser-matter interactions. Physical Review A, 2015, 92, .	2.5	16

#	Article	IF	Citations
37	Protocol for observing molecular dipole excitations by attosecond self-streaking. Physical Review A, 2015, 92, .	2.5	4
38	Attosecond Coherent Control of Single and Double Photoionization in Argon. Physical Review Letters, 2015, 115, 173004.	7.8	13
39	Steering the electron motion by two counter-rotating circularly polarized short intense laser pulses. Journal of Physics: Conference Series, 2015, 635, 092028.	0.4	О
40	Controlling ultrafast currents by the nonlinear photogalvanic effect. New Journal of Physics, 2015, 17, 123026.	2.9	22
41	Mapping ultrafast dynamics of highly excited D ₂ ⁺ by ultrashort XUV pump - IR probe radiation. Journal of Physics: Conference Series, 2015, 635, 112080.	0.4	0
42	Origins of Very-Low and Zero-Energy Electron Structures in Strong-Field Ionization with Intense Mid-IR Pulses. Journal of Physics: Conference Series, 2015, 635, 052055.	0.4	0
43	Mechanism of dominance of the Breit interaction in dielectronic recombination. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 144002.	1.5	11
44	Strong-field ionization with two-color circularly polarized laser fields. Physical Review A, 2015, 91, .	2.5	124
45	Quantum Beats in Attosecond Transient Absorption of Krypton Autoionizing States. , 2015, , .		0
46	Direct Observation of Rescattering from Strong Field Ionization by Two-Color Circularly Polarized Laser Fields. , $2015, \ldots$		0
47	Rydberg states in the strong field ionization of hydrogen by 800, 1200 and 1600 nm lasers. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 204019.	1.5	22
48	Formation of very-low-energy states crossing the ionization threshold of argon atoms in strong mid-infrared fields. Physical Review A, 2014, 90, .	2.5	67
49	Atomic-number dependence of the magnetic-sublevel population in the autoionization state formed in dielectronic recombination. Physical Review A, 2014, 90, .	2.5	20
50	Fine structures in the intensity dependence of excitation and ionization probabilities of hydrogen atoms in intense 800-nm laser pulses. Physical Review A, 2014, 89, .	2.5	58
51	Attosecond vacuum UV coherent control of molecular dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 912-917.	7.1	116
52	<i>AbÂlnitio</i> Simulation of Electrical Currents Induced by Ultrafast Laser Excitation of Dielectric Materials. Physical Review Letters, 2014, 113, 087401.	7.8	100
53	Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses. Physical Review A, 2014, 89, .	2.5	42
54	Intensity dependence of the attosecond control of the dissociative ionization of D2. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 124020.	1.5	16

#	Article	IF	CITATIONS
55	Mechanisms on the Photoelectron Angular Distributions of Atoms Ionized in Mid-Infrared Laser Fields. Journal of Physics: Conference Series, 2014, 488, 032040.	0.4	O
56	Classical-quantum correspondence in atomic ionization by midinfrared pulses: Multiple peak and interference structures. Physical Review A, 2013, 87, .	2.5	35
57	Photoionization dynamics in the presence of attosecond pulse trains and strong fields. Chemical Physics, 2013, 414, 139-148.	1.9	7
58	Enhanced multiple-scattering and intra-half-cycle interferences in the photoelectron angular distributions of atoms ionized in midinfrared laser fields. Physical Review A, 2013, 88, .	2.5	16
59	xmins:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msup><mml:mrow /><mml:mn>15</mml:mn></mml:mrow </mml:msup> W/cm <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msup>with an accuracy of 1<mml:math< td=""><td>2.5</td><td>35</td></mml:math<></mml:math 	2.5	35
60	Subcycle laser control and quantum interferences in attosecond photoabsorption of neon. Physical Review A, 2013, 87, .	2.5	49
61	Low-Energy Peak Structure in Strong-Field Ionization by Mid-Infrared Laser Pulses. EPJ Web of Conferences, 2013, 41, 02016.	0.3	0
62	Sub-cycle laser control and quantum interferences in attosecond photoabsorption of neon., 2013,,.		0
63	Attosecond-Resolved Evolution of a Laser-Dressed Helium Atom: Interfering Excitation Paths and Quantum Phases. Physical Review Letters, 2012, 108, 193002.	7.8	45
64	Experimental Demonstration of the Breit Interaction which Dominates the Angular Distribution of X-ray Emission in Dielectronic Recombination. Physical Review Letters, 2012, 108, 073002.	7.8	76
65	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mrow /><mml:mo>+</mml:mo></mml:mrow </mml:msup>ions in intense laser fields. Physical Review A, 2012,</mml:math 	2.5	6
66	Measurement of the absolute timing of attosecond XUV bursts with respect to the driving field. Physical Review A, 2012, 85, . Mass polarization effect on the resonant energies of markmath.	2.5	2
67	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mover accent="true"><mml:mi>p</mml:mi><mml:mo>¯</mml:mo>-He<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mrow /><mml:mo>+</mml:mo></mml:mrow </mml:msup>ions and the protonium formation in low-energy</mml:math </mml:mover 	2.5	3
68	antiprotonae hydrogen-atom collisions. Physical Review A. 2012, 85 Low-energy peak structure in strong-field ionization by midinfrared laser pulses: Two-dimensional focusing by the atomic potential. Physical Review A, 2012, 85, .	2.5	64
69	Controlling the XUV transparency using two pathway quantum interference. Journal of Physics: Conference Series, 2012, 388, 032072.	0.4	0
70	Alignment dependent ionization of hydrogen molecules in intense laser field â€" the validity of molecular tunneling theory. Journal of Physics: Conference Series, 2012, 388, 032068.	0.4	0
71	Direct Visualization of Laser-Driven Electron Multiple Scattering and Tunneling Distance in Strong-Field Ionization. Physical Review Letters, 2012, 109, 073004.	7.8	172
72	Femtosecond and Attosecond Spectroscopy in the XUV Regime. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 351-362.	2.9	1

#	Article	IF	CITATIONS
73	Infrared laser assisted photoabsorption of Ne atoms. Journal of Physics: Conference Series, 2011, 288, 012018.	0.4	O
74	Structure and dynamics of highly charged heavy ions studied with the electron beam ion trap in Tokyo. Hyperfine Interactions, 2011, 199, 123-130.	0.5	1
75	Ionization of hydrogen molecular ions in an intense laser field via a resonant state. Computer Physics Communications, 2011, 182, 146-148.	7.5	2
76	Time-dependent method in the laser–atom interactions. Computer Physics Communications, 2011, 182, 21-23.	7.5	2
77	Laser information encoded in atomic asymmetrical ionization in few-cycle laser fields. Physical Review A, $2011, 84, .$	2.5	6
78	Theory and experiment on laser-enabled inner-valence Auger decay of rare-gas atoms. Physical Review A, 2011, 84, .	2.5	10
79	Alignment-dependent ionization of hydrogen molecules in intense laser fields. Physical Review A, 2011, 83, .	2.5	9
80	Controlling the XUV Transparency of Helium Using Two-Pathway Quantum Interference. Physical Review Letters, 2011, 106, 193008.	7.8	58
81	Laser-Enabled Auger Decay in Rare-Gas Atoms. Physical Review Letters, 2011, 106, 053002.	7.8	25
82	Attosecond Streaking in the Low-Energy Region as a Probe of Rescattering. Physical Review Letters, 2011, 107, 183001.	7.8	47
83	Structure and dynamics of highly charged heavy ions studied with the electron beam ion trap in Tokyo. , 2011, , 123-130.		0
84	Activities at the Tokyo EBIT 2010. Journal of Instrumentation, 2010, 5, C08007-C08007.	1.2	1
85	Double ionization of He in an intense laser field via a rescattering process. Physical Review A, 2010, 82,	2.5	8
86	Infrared-laser-assisted photoionization of helium by coherent extreme ultraviolet light. Physical Review A, 2010, 81, .	2.5	14
87	Mechanisms of infrared-laser-assisted atomic ionization by attosecond pulses. Physical Review A, 2010, 81, .	2.5	49
88	Enhanced ionization of hydrogen molecular ions in an intense laser field via a multiphoton resonance. Physical Review A, 2010, 81, .	2.5	16
89	IR-assisted ionization of helium by attosecond extreme ultraviolet radiation. New Journal of Physics, 2010, 12, 013008.	2.9	77
90	Controlling atomic structures and photoabsorption processes by an infrared laser. Physical Review A, 2010, 81, .	2.5	28

#	Article	IF	CITATIONS
91	Theoretical study on the dynamical correlation in Ar focusing on3sexcitation with outer-shell ionization due to electron impacts. Physical Review A, 2009, 80, .	2.5	3
92	Green's function for multielectron ions and its application to radiative recombination involving dielectronic recombinations. Physical Review A, 2009, 80, .	2.5	10
93	Atomic photoabsorption process controlled by static and oscillating magnetic fields. Physical Review A, 2009, 80, .	2.5	6
94	Asymmetric profiles observed in the recombination of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mtext> Bi </mml:mtext> </mml:mrow> <mml:mrow> A benchmark for relativistic theories involving interference. Physical Review A, 2009, 80, .</mml:mrow></mml:msup></mml:mrow></mml:math>	<2:5 <111ml:mn>] 9
95	A new time-dependent scattering theory and its application to the capture of antiprotons by atoms. Journal of Physics: Conference Series, 2009, 185, 012047.	0.4	O
96	Anomalous exciton spectra of laser-driven semiconductor superlattices. Solid State Communications, 2009, 149, 823-826.	1.9	3
97	Coulomb focusing effect on the space distribution of the rescattering electron wavepacket in the laser–atom interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 165603.	1.5	8
98	IR-assisted ionization of He by attosecond XUV radiation. Journal of Physics: Conference Series, 2009, 194, 032036.	0.4	0
99	Space distribution of the rescattering electron wavepacket in the laser-atom interactions. Journal of Physics: Conference Series, 2009, 185, 012048.	0.4	O
100	A New Time-Dependent Scattering Theory: Application to the Capture of Antiprotons by Hydrogen Atoms and Helium Atoms. AIP Conference Proceedings, 2008, , .	0.4	0
101	Branching ratios of x-ray photons from dielectronic recombination processes in H-like titanium ions. Physical Review A, 2008, 77, .	2.5	15
102	Elusive enhanced ionization structure for <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn><mml:none></mml:none><mml:none></mml:none><mml:mo>+</mml:mo></mml:mmultiscripts></mml:math> in intense ultrashort laser pulses. Physical Review A, 2008, 78, .	2.5	38
103	Anomalous Bumpy Structures in the Capture Cross Sections of Antiprotons by Helium. Physical Review Letters, 2008, 101, 163201.	7.8	16
104	Interacting dynamic Wannier-Stark ladder driven by a periodic pulse train. Physical Review B, 2008, 77, .	3.2	7
105	Soft X-ray-Driven Femtosecond Molecular Dynamics. Science, 2007, 317, 1374-1378.	12.6	178
106	Application of linear density response theory to electron-impact autoionizing resonances. Physical Review A, 2007, 76, .	2.5	2
107	Numerical Observation of the Rescattering Wave Packet in Laser-Atom Interactions. Physical Review Letters, 2007, 99, 093001.	7.8	48
108	Time-dependent approach to three-body rearrangement collisions: Application to the capture of heavy negatively charged particles by hydrogen atoms. Physical Review A, 2007, 75, .	2.5	23

#	Article	IF	Citations
109	Direct time resolved observation of molecular dynamics induced by soft-x-ray photoionization. Journal of Physics: Conference Series, 2007, 88, 012037.	0.4	1
110	Computational methods for laser-atom interactions. Journal of Physics: Conference Series, 2007, 88, 012047.	0.4	3
111	Dynamics of Light-Field Control of Molecular Dissociation at the Few-Cycle Limit. Physical Review Letters, 2007, 98, 123002.	7.8	82
112	Alignment dependence of high-order harmonic generation from CO2. Journal of Modern Optics, 2007, 54, 967-980.	1.3	25
113	Carrier-envelope phase dependence of nonsequential double ionization of H2by few-cycle laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 641-649.	1.5	15
114	Interacting Dynamic Wannier-Stark Ladder Driven By A Pulse Train With Periodic Repetition: Removal Of Interminiband Interactions And Negative Absorption. AIP Conference Proceedings, 2007, , .	0.4	0
115	Phase-dependent atomic ionization in few-cycle intense laser fields. Physical Review A, 2006, 74, .	2.5	166
116	Creation and control of a single coherent attosecond xuv pulse by few-cycle intense laser pulses. Physical Review A, 2006, 74, .	2.5	130
117	Direct experimental visualization of atomic and electron dynamics with attosecond pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, S419-S426.	1.5	12
118	Dependence of tunneling ionization and harmonic generation on the structure of molecules by short intense laser pulses. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 213-219.	3.9	21
119	Effects of orbital symmetries on the ionization rates of aligned molecules by short intense laser pulses. Journal of Modern Optics, 2006, 53, 21-33.	1.3	19
120	Effect of electron correlation on high-order-harmonic generation of helium atoms in intense laser fields: Time-dependent generalized pseudospectral approach in hyperspherical coordinates. Physical Review A, 2006, 73, .	2.5	39
121	Evidence of two-center interference in high-order harmonic generation fromCO2. Physical Review A, 2006, 73, .	2.5	72
122	Laser-induced substructures in above-threshold-ionization spectra from intense few-cycle laser pulses. Physical Review A, 2006, 73, .	2.5	40
123	Attosecond xuv pulses for complete mapping of the time-dependent wave packets of D2+. Physical Review A, 2006, 73, .	2.5	15
124	Analysis of two-dimensional photoelectron momentum spectra and the effect of the long-range Coulomb potential in single ionization of atoms by intense lasers. Physical Review A, 2006, 74, .	2.5	118
125	Signatures of tunneling and multiphoton ionization in the electron-momentum distributions of atoms by intense few-cycle laser pulses. Physical Review A, 2006, 74, .	2.5	32
126	State-Specified Protonium Formation in Low-Energy Antiproton–Hydrogen-Atom Collisions. Physical Review Letters, 2006, 97, 243202.	7.8	28

#	Article	IF	CITATIONS
127	Comment on "Correlation Quantum Dynamics between an Electron andD2+Molecule with Attosecond Resolution― Physical Review Letters, 2006, 97, 049301; author reply 049302.	7.8	5
128	PROBING ORBITAL SYMMETRIES AND IONIZATION DYNAMICS OF SIMPLE MOLECULES WITH FEMTOSECOND LASER PULSES. Advances in Multi-photon Processes and Spectroscopy, 2006, , 1-27.	0.6	1
129	Photon–ion collisions and molecular clocks. Journal of Modern Optics, 2005, 52, 439-451.	1.3	2
130	Molecular tunnelling ionization and rescattering induced double ionization of H2and D2molecules. Journal of Modern Optics, 2005, 52, 185-199.	1.3	2
131	Measuring attosecond pulses generated from polarization gating., 2005,,.		0
132	Dielectronic recombination of hydrogen-like ions. Nuclear Instruments & Methods in Physics Research B, 2005, 235, 261-264.	1.4	9
133	Electron emission from surfaces induced by HCI and lasers. Nuclear Instruments & Methods in Physics Research B, 2005, 235, 425-430.	1.4	3
134	Energy loss of charged particles at large distances from metal surfaces. Physical Review A, 2005, 72, .	2.5	33
135	Simultaneous real-time tracking of wave packets evolving on two different potential curves inH2+andD2+. Physical Review A, 2005, 72, .	2.5	81
136	Momentum imaging of doubly charged ions of Ne and Ar in the sequential ionization region. Physical Review A, 2005, 72, .	2.5	67
137	Very-high-order harmonic generation from Ar atoms and Ar+ions in superintense pulsed laser fields: Anab initioself-interaction-free time-dependent density-functional approach. Physical Review A, 2005, 71, .	2.5	15
138	Resonant excitation during strong-field dissociative ionization. Physical Review A, 2005, 72, .	2.5	18
139	Signature of chaos in high-lying doubly excited states of the helium atom. Physical Review A, 2005, 72, .	2.5	13
140	Role of molecular orbital symmetry on the alignment dependence of high-order harmonic generation with molecules. Physical Review A, 2005, 71, .	2.5	86
141	Effects of orbital symmetries in dissociative ionization of molecules by few-cycle laser pulses. Physical Review A, 2005, 71, .	2.5	100
142	Double photoexcitation of He atoms by attosecond xuv pulses in the presence of intense few-cycle infrared lasers. Physical Review A, 2005, 71, .	2.5	19
143	Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements. Optics Express, 2005, 13, 1966.	3.4	8
144	Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 2593-2600.	1.5	505

#	Article	IF	Citations
145	Post ionization alignment of the fragmentation of molecules in an ultrashort intense laser field. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 333-341.	1.5	67
146	Alignment dependence of high-order harmonic generation from N2 and O2 molecules in intense laser fields. Physical Review A, 2005, 72, .	2.5	97
147	High resolution kinetic energy release spectra and angular distributions from double ionization of nitrogen and oxygen by short laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 4239-4257.	1.5	71
148	Laser-peak-intensity calibration using recoil-ion momentum imaging. Physical Review A, 2004, 70, .	2.5	134
149	Ionization suppression of Cl2molecules in intense laser fields. Physical Review A, 2004, 70, .	2.5	36
150	Routes to Control ofH2Coulomb Explosion in Few-Cycle Laser Pulses. Physical Review Letters, 2004, 93, 183202.	7.8	133
151	Propensity Rule for Novel Selective Double Photoexcitation of Helium Atoms in Strong Static Electric Fields. Physical Review Letters, 2004, 92, 223003.	7.8	19
152	Effects Of Molecular Structure on Ion Disintegration Patterns In Ionization ofO2andN2by Short Laser Pulses. Physical Review Letters, 2004, 93, 113003.	7.8	183
153	HOW TO READ A MOLECULAR CLOCK WITH SUB-FEMTOSECOND ACCURACY. International Journal of Modern Physics B, 2004, 18, 1659-1678.	2.0	2
154	Dielectronic recombination in He-like titanium ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 2343-2353.	1.5	37
155	Time-resolved sequential double ionization of D2 molecules in an intense few-cycle laser pulse. Physical Review A, 2004, 70, .	2.5	16
156	Friction Force for Charged Particles at Large Distances from Metal Surfaces. Advances in Quantum Chemistry, 2004, , 29-64.	0.8	4
157	Towards Attosecond Half-Cycle Pulses. Springer Series in Optical Sciences, 2004, , 253-257.	0.7	1
158	Dielectronic recombination in highly charged He-like ions. Nuclear Instruments & Methods in Physics Research B, 2003, 205, 378-381.	1.4	4
159	The measurement of the electron impact ionization cross-sections of hydrogen-like ions. Nuclear Instruments & Methods in Physics Research B, 2003, 205, 417-420.	1.4	1
160	Electron Emission from Metal Surfaces by Ultrashort Pulses: Determination of the Carrier-Envelope Phase. Physical Review Letters, 2003, 90, 076403.	7.8	113
161	Probing Molecular Dynamics at Attosecond Resolution with Femtosecond Laser Pulses. Physical Review Letters, 2003, 91, 233203.	7.8	77
162	Quantum localization in the three-dimensional kicked Rydberg atom. Physical Review A, 2003, 68, .	2.5	19

#	Article	IF	Citations
163	Correlation dynamics between electrons and ions in the fragmentation of D2 molecules by short laser pulses. Physical Review A, 2003, 68, .	2.5	40
164	Rescattering Double Ionization of D2 and H2 by Intense Laser Pulses. Physical Review Letters, 2003, 91, 163002.	7.8	114
165	Alignment-dependent ionization probability of molecules in a double-pulse laser field. Physical Review A, 2003, 67, .	2.5	82
166	Publisher's Note: Rescattering Double Ionization ofD2andH2by Intense Laser Pulses [Phys. Rev. Lett.91, 163002 (2003)]. Physical Review Letters, 2003, 91, .	7.8	1
167	Abnormal pulse duration dependence of the ionization probability of Na atoms in intense laser fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 1121-1127.	1.5	3
168	Analysis of Resonance Transitions in X-Ray Spectra of Electron Interaction with Highly Charged Iron Ions Journal of Plasma and Fusion Research, 2003, 79, 52-60.	0.4	5
169	Photoabsorption spectra of I and its ions in the4dregion. Physical Review A, 2002, 65, .	2.5	10
170	Single ionization of helium by antiprotons: A case study by self-interaction-free time-dependent density-functional theory. Physical Review A, 2002, 66, .	2.5	26
171	High-order harmonic cutoff extension of theO2molecule due to ionization suppression. Physical Review A, 2002, 66, .	2.5	42
172	Scaling relation in the collision of hydrogenlike ions with antiprotons. Physical Review A, 2002, 66, .	2.5	13
173	Quantum localization in the high-frequency limit. Physical Review A, 2002, 66, .	2.5	7
174	Electron impact ionization of hydrogen-like molybdenum ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 5095-5103.	1.5	19
175	Theory of molecular tunneling ionization. Physical Review A, 2002, 66, .	2.5	748
176	Giant Resonance in 4d Photoionization of Xe-Like Iso-Electronic Sequence. Physica Scripta, 2001, T92, 388-390.	2.5	0
177	Giant Resonance in 4d Photoâ€lonization and â€Excitation of High Z Atoms and Ions; Systematic Study of Dynamic Electronâ€Correlation. Journal of the Chinese Chemical Society, 2001, 48, 499-504.	1.4	0
178	Density Functional Theory with Optimized Effective Potential: An Application to Hollow Atoms in the Bulk of Metallic Materials. Journal of the Chinese Chemical Society, 2001, 48, 477-482.	1.4	0
179	Fineâ€structure in 3d ⁴ States of Highly Charged Tiâ€like Ions. Journal of the Chinese Chemical Society, 2001, 48, 525-529.	1.4	12
180	The measurement of the dielectronic recombination in He-like Fe ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 5095-5102.	1.5	52

#	Article	IF	Citations
181	Electron-impact ionization of hydrogen-like iron ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 4003-4013.	1.5	25
182	lonization of atomic hydrogen by antiproton impact:â€fA direct solution of the time-dependent Schrödinger equation. Physical Review A, 2001, 64, .	2.5	30
183	Comparison of Excitation Processes by Proton and Antiproton Impacts on Hydrogen Atoms; Direct Solution of Time Dependent SchrĶdinger Equation. Journal of the Chinese Chemical Society, 2001, 48, 505-508.	1.4	1
184	Multiphoton ionization and high-order harmonic generation of He, Ne, and Ar atoms in intense pulsed laser fields: Self-interaction-free time-dependent density-functional theoretical approach. Physical Review A, 2001, 64, .	2.5	88
185	Energy structure of hollow atoms or ions in the bulk of metallic materials. Physical Review A, 2001, 63, .	2.5	11
186	Sharp and window resonances in the 4dphotoabsorption spectrum of Eu+ions. Physical Review A, 2001, 64, .	2.5	5
187	Electron spectroscopy of doubly excited states in He produced by slow collisions ofHe2+ions with Ba atoms. Physical Review A, 2001, 64, .	2.5	7
188	Self-interaction-free density-functional theoretical study of the electronic structure of spherical and vertical quantum dots. Physical Review B, 2001, 63, .	3.2	20
189	Mechanisms of giant resonance in 4d photoionization of Eu. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 717-725.	1.5	11
190	Time-dependent Schrödinger equation method: Application to charge transfer and excitation in H andH+collisions. Physical Review A, 2000, 62, .	2.5	24
191	Probing the spectral and temporal structures of high-order harmonic generation in intense laser pulses. Physical Review A, 2000, 61, .	2.5	188
192	High energy operation of the Tokyo-electron beam ion trap/present status. Review of Scientific Instruments, 2000, 71, 687-689.	1.3	4
193	Time-dependent approach to high-resolution spectroscopy and quantum dynamics of Rydberg atoms in crossed magnetic and electric fields. Physical Review A, 2000, 61, .	2.5	57
194	Charge capture and impact excitation processes in H+on He+collisions: a case study by the time-dependent SchrĶdinger equation method. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 5585-5591.	1.5	9
195	Multiple high-order harmonic generation in the presence of intense laser and static magnetic fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 5593-5603.	1.5	13
196	Recent New Developments of Steadyâ€State and Timeâ€Dependent Density Functional Theories for the Treatment of Structure and Dynamics of Manyâ€Electron Atomic, Molecular, and Quantum Dot Systems. Journal of the Chinese Chemical Society, 1999, 46, 361-374.	1.4	1
197	Time-dependent approach to high-resolution spectroscopy: application to the photoabsorption spectrum of classically chaotic hydrogen atoms in magnetic fields. Chemical Physics Letters, 1998, 294, 31-36.	2.6	16
198	Time-dependent density-functional theory with optimized effective potential and self-interaction correction: Application to the study of coherent control of multiple high-order harmonic generation of He atoms in mixed laser fields. International Journal of Quantum Chemistry, 1998, 69, 293-303.	2.0	13

#	Article	IF	CITATIONS
199	Time-dependent density-functional theory for strong-field multiphoton processes: Application to the study of the role of dynamical electron correlation in multiple high-order harmonic generation. Physical Review A, 1998, 57, 452-461.	2.5	133
200	Relativistic density-functional theory with the optimized effective potential and self-interaction correction: Application to atomic structure calculations(Z=2–106). Physical Review A, 1998, 57, 855-863.	2.5	35
201	Generation of circularly polarized multiple high-order harmonic emission from two-color crossed laser beams. Physical Review A, 1998, 58, R2656-R2659.	2.5	52
202	Time-dependent density-functional theory with optimized effective potential and self-interaction correction: Application to the study of coherent control of multiple high-order harmonic generation of He atoms in mixed laser fields., 1998, 69, 293.		1
203	Timeâ€dependent densityâ€functional theory with optimized effective potential and selfâ€interaction correction: Application to the study of coherent control of multiple highâ€order harmonic generation of He atoms in mixed laser fields. International Journal of Quantum Chemistry, 1998, 69, 293-303.	2.0	2
204	Density-functional theory with optimized effective potential and self-interaction correction for ground states and autoionizing resonances. Physical Review A, 1997, 55, 3406-3416.	2.5	159
205	Theoretical study of multiple high-order harmonic generation by intense ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method. Chemical Physics, 1997, 217, 119-130.	1.9	384
206	Triply differential cross section and polarization correlations in electron bremsstrahlung emission. Physical Review A, 1996, 53, 4158-4163.	2.5	25
207	Abnormal branching ratios in laser-excited Rydberg series ofYb+,Ba+, andSr+. Physical Review A, 1996, 53, 3994-3999.	2.5	6
208	Relativistic Multichannel Theory: Scaling Behavior of Multichannel Quantum Defect Theory Parameters ($\hat{l}_4 < \hat{l}_5 + \hat{l}_5 = \hat{l}_5 = \hat{l}_5 + \hat{l}_5 = \hat{l}_5 =$	3.3	1
209	New developments in the theory of bremsstrahlung. Nuclear Instruments & Methods in Physics Research B, 1995, 99, 156-159.	1.4	14
210	Heatâ€energy deposition in xâ€ray interaction with materials application to Si and Be. Journal of Applied Physics, 1995, 78, 2288-2297.	2.5	6
211	Atomic energy levels and Landégfactors: A theoretical study. Physical Review A, 1995, 52, 2770-2777.	2.5	54
212	Electron Impact Excitation Cross Section and Rate: Revised Bethe Formula. Chinese Physics Letters, 1995, 12, 581-584.	3.3	3
213	Relativistic Multichannel Theory: Theoretical Studies of Excited Energy Structure of Ar Atom. Chinese Physics Letters, 1995, 12, 351-354.	3.3	9
214	Relativistic Theoretical Calculation of O III: Radiative Transition Rates and the Bowen Mechanism in Planetary Nebulae. Chinese Physics Letters, 1994, 11, 69-72.	3.3	2
215	Relativistic effect of atomic radiative processes. Physical Review A, 1994, 49, 4641-4644.	2.5	8
216	Correlation functions of liquid alkali metals near freezing. Physical Review B, 1994, 49, 6608-6613.	3.2	1

#	Article	IF	CITATIONS
217	Simulation calculation on electronic processes under intense X-ray and electron beam irradiation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 327, 31-33.	1.6	1
218	Theoretical Studies of the X-Ray Mirror Surface Roughness. Japanese Journal of Applied Physics, 1993, 32, L502-L505.	1.5	5
219	Direct Extraction of Sodium Negative Ions from Sodium Plasma. Japanese Journal of Applied Physics, 1993, 32, 3659-3663.	1.5	2
220	<title>Heat-load studies on the SPring-8 beamlines I: theoretical calculation for the multipole wiggler</title> ., 1993, 1739, 514.		1
221	<title>Front-end components for SPring-8 insertion devices: finite-element analysis for a heat absorber</title> ., 1993,,.		1
222	<title>Surface-roughness measurements of SiC x-ray mirrors</title> ., 1993, 1739, 554.		0
223	<title>Heat-load studies the SPring-8 beamlines II: thermal problems of beamline optics</title> ., 1993,,.		2
224	<pre><title>Simulation calculation on energy deposition in high heat load x-ray optical systems</pre>/title>. , 1993, , .</td><td></td><td>0</td></tr><tr><td>225</td><td>Hard xâ€ray interaction with materials. Review of Scientific Instruments, 1992, 63, 493-495.</td><td>1.3</td><td>6</td></tr><tr><td>226</td><td>Extraction characteristics of Na and Na2 negative ions from a small multicusp ion source. Review of Scientific Instruments, 1992, 63, 2447-2449.</td><td>1.3</td><td>3</td></tr><tr><td>227</td><td>A vacuum protection system for the front end of SPringâ€8. Review of Scientific Instruments, 1992, 63, 376-379.</td><td>1.3</td><td>5</td></tr><tr><td>228</td><td>Re-emitted spectra of X-rays traversing a solid material. Nuclear Instruments & Methods in Physics Research B, 1992, 71, 427-433.</td><td>1.4</td><td>1</td></tr><tr><td>229</td><td>Inner-shell electron energy loss spectra of NO2 at high resolution: Comparison with multichannel quantum defect calculations of dipole oscillator strengths and transition energies. Chemical Physics, 1990, 140, 265-279.</td><td>1.9</td><td>31</td></tr><tr><td>230</td><td>Two-photon transitions in atomic inner shells: Relativistic and atomic-screening effects. Physical Review A, 1990, 42, 1442-1449.</td><td>2.5</td><td>27</td></tr><tr><td>231</td><td>Delayed maxima in photoionization cross sections of atomic ions. Physical Review A, 1990, 42, 5348-5351.</td><td>2.5</td><td>18</td></tr><tr><td>232</td><td>Inner-shell excitation of NO2-near-threshold structure. Journal of Physics B: Atomic, Molecular and Optical Physics, 1989, 22, 1531-1535.</td><td>1.5</td><td>11</td></tr><tr><td>233</td><td>Inner-Shell Excitation Of SO 2 And NO 2 By High Resolution Electron Energy Loss
SpectroscopyComparison With Multichannel Quantum Defect Theory. Proceedings of SPIE, 1988, 0911,
46.</td><td>0.8</td><td>1</td></tr><tr><td>234</td><td>Inner shell excitation of SO2 by high-energy electron impact: a comparison with multichannel quantum defect theory. Chemical Physics, 1987, 115, 433-451.</td><td>1.9</td><td>59</td></tr></tbody></table></title></pre>		