
Robert H Insall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9526028/publications.pdf Version: 2024-02-01

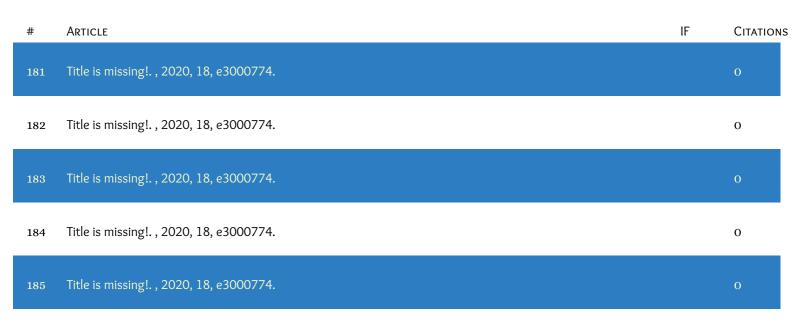
#	Article	IF	CITATIONS
1	Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Current Biology, 1998, 8, 1347-1356.	3.9	838
2	Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Current Biology, 2000, 10, 311-320.	3.9	490
3	Actin Dynamics at the Leading Edge: From Simple Machinery to Complex Networks. Developmental Cell, 2009, 17, 310-322.	7.0	373
4	Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions. Nature Cell Biology, 2007, 9, 193-200.	10.3	336
5	Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood, 2014, 123, 239-248.	1.4	269
6	Signaling to Actin Dynamics. Journal of Cell Biology, 1999, 146, 267-272.	5.2	243
7	PIP3, PIP2, and Cell Movement—Similar Messages, Different Meanings?. Developmental Cell, 2001, 1, 743-747.	7.0	176
8	CRAC, a cytosolic protein containing a pleckstrin homology domain, is required for receptor and G protein-mediated activation of adenylyl cyclase in Dictyostelium Journal of Cell Biology, 1994, 126, 1537-1545.	5.2	163
9	The induction of autophagy by mechanical stress. Autophagy, 2011, 7, 1490-1499.	9.1	156
10	WASP and SCAR/WAVE proteins: the drivers of actin assembly. Journal of Cell Science, 2009, 122, 2575-2578.	2.0	153
11	N-WASP coordinates the delivery and F-actin–mediated capture of MT1-MMP at invasive pseudopods. Journal of Cell Biology, 2012, 199, 527-544.	5.2	151
12	Actin polymerization driven by WASH causes V-ATPase retrieval and vesicle neutralization before exocytosis. Journal of Cell Biology, 2011, 193, 831-839.	5.2	144
13	PIR121 Regulates Pseudopod Dynamics and SCAR Activity in Dictyostelium. Current Biology, 2003, 13, 1480-1487.	3.9	143
14	Behavioral and Structural Differences in Migrating Peripheral Neutrophils from Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1176-1186.	5.6	143
15	Chemotaxis: A Feedback-Based Computational Model Robustly Predicts Multiple Aspects of Real Cell Behaviour. PLoS Biology, 2011, 9, e1000618.	5.6	141
16	Chemotaxis: finding the way forward with Dictyostelium. Trends in Cell Biology, 2009, 19, 523-530.	7.9	140
17	A plasma membrane template for macropinocytic cups. ELife, 2016, 5, .	6.0	140
18	WASP Family Proteins: Their Evolution and Its Physiological Implications. Molecular Biology of the Cell. 2010. 21. 2880-2893.	2.1	136

#	Article	IF	CITATIONS
19	The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Current Biology, 1996, 6, 719-729.	3.9	128
20	The Arp2/3 activator WASH regulates α5β1-integrin-mediated invasive migration. Journal of Cell Science, 2011, 124, 3753-3759.	2.0	127
21	Dynamics of theDictyosteliumArp2/3 complex in endocytosis, cytokinesis, and chemotaxis. Cytoskeleton, 2001, 50, 115-128.	4.4	126
22	Understanding eukaryotic chemotaxis: a pseudopod-centred view. Nature Reviews Molecular Cell Biology, 2010, 11, 453-458.	37.0	122
23	Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis. PLoS Biology, 2016, 14, e1002404.	5.6	114
24	Dictyostelium RasG Is Required for Normal Motility and Cytokinesis, But Not Growth. Journal of Cell Biology, 1997, 138, 605-614.	5.2	111
25	Melanoma Cells Break Down LPA to Establish Local Gradients That Drive Chemotactic Dispersal. PLoS Biology, 2014, 12, e1001966.	5.6	111
26	An Improved Chamber for Direct Visualisation of Chemotaxis. PLoS ONE, 2010, 5, e15309.	2.5	104
27	Ca2+ signalling is not required for chemotaxis in Dictyostelium. EMBO Journal, 2000, 19, 4846-4854.	7.8	101
28	Seeing around corners: Cells solve mazes and respond at a distance using attractant breakdown. Science, 2020, 369, .	12.6	99
29	A Novel Ras-interacting Protein Required for Chemotaxis and Cyclic Adenosine Monophosphate Signal Relay in <i>Dictyostelium</i> . Molecular Biology of the Cell, 1999, 10, 2829-2845.	2.1	98
30	Rac1 Drives Melanoblast Organization during Mouse Development by Orchestrating Pseudopod- Driven Motility and Cell-Cycle Progression. Developmental Cell, 2011, 21, 722-734.	7.0	98
31	Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation. ELife, 2017, 6, .	6.0	96
32	Seven Helix Chemoattractant Receptors Transiently Stimulate Mitogen-activated Protein Kinase in Dictyostelium. Journal of Biological Chemistry, 1996, 271, 3351-3354.	3.4	94
33	SCAR knockouts in <i>Dictyostelium</i> : WASP assumes SCAR's position and upstream regulators in pseudopods. Journal of Cell Biology, 2012, 198, 501-508.	5.2	93
34	PIP3-dependent macropinocytosis is incompatible with chemotaxis. Journal of Cell Biology, 2014, 204, 497-505.	5.2	91
35	Signaling through chemoattractant receptors in Dictyostelium. Trends in Genetics, 1996, 12, 52-57.	6.7	84
36	WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion. Molecular Biology of the Cell, 2013, 24, 2714-2726.	2.1	82

#	Article	IF	CITATIONS
37	WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5906-E5915.	7.1	79
38	Distinct Interaction Sites of Rac GTPase with WAVE Regulatory Complex Have Non-redundant Functions inÂVivo. Current Biology, 2018, 28, 3674-3684.e6.	3.9	75
39	Nap1 Regulates Dictyostelium Cell Motility and Adhesion through SCAR-Dependent and -Independent Pathways. Current Biology, 2006, 16, 717-722.	3.9	74
40	F-BAR domains: multifunctional regulators of membrane curvature. Journal of Cell Science, 2008, 121, 1951-1954.	2.0	72
41	Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. Journal of Clinical Periodontology, 2015, 42, 1-11.	4.9	69
42	Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum. PLoS ONE, 2018, 13, e0196809.	2.5	65
43	Regulation of actin assembly by SCAR/WAVE proteins. Biochemical Society Transactions, 2005, 33, 1243.	3.4	64
44	Loss of Scar/WAVE Complex Promotes N-WASP- and FAK-Dependent Invasion. Current Biology, 2013, 23, 107-117.	3.9	64
45	Fam49/CYRI interacts with Rac1 and locally suppresses protrusions. Nature Cell Biology, 2018, 20, 1159-1171.	10.3	64
46	Modeling Cell Movement and Chemotaxis Using Pseudopod-Based Feedback. SIAM Journal of Scientific Computing, 2011, 33, 1035-1057.	2.8	60
47	WASP family proteins and formins compete in pseudopod- and bleb-based migration. Journal of Cell Biology, 2018, 217, 701-714.	5.2	59
48	Regulation of actin assembly by SCAR/WAVE proteins. Biochemical Society Transactions, 2005, 33, 1243-1246.	3.4	57
49	Control of actin dynamics during cell motility. F1000Research, 2019, 8, 1977.	1.6	55
50	Small GTPases in Dictyostelium: lessons from a social amoeba. Trends in Genetics, 2001, 17, 41-48.	6.7	53
51	Cyclical Action of the WASH Complex: FAM21 and Capping Protein Drive WASH Recycling, Not Initial Recruitment. Developmental Cell, 2013, 24, 169-181.	7.0	52
52	Entamoeba histolytica cell movement: A central role for self-generated chemokines and chemorepellents. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18751-18756.	7.1	49
53	SCAR/WAVE is activated at mitosis and drives myosin-independent cytokinesis. Journal of Cell Science, 2010, 123, 2246-2255.	2.0	49
54	Phospholipase D activity is essential for actin localization and actin-based motility in Dictyostelium. Biochemical Journal, 2005, 389, 207-214.	3.7	48

#	Article	IF	CITATIONS
55	The interaction between pseudopods and extracellular signalling during chemotaxis and directed migration. Current Opinion in Cell Biology, 2013, 25, 526-531.	5.4	47
56	p21-Activated Kinase (PAK) Regulates Cytoskeletal Reorganization and Directional Migration in Human Neutrophils. PLoS ONE, 2013, 8, e73063.	2.5	47
57	Self-generated chemotactic gradients—cells steering themselves. Current Opinion in Cell Biology, 2016, 42, 46-51.	5.4	47
58	<i>Dictyostelium</i> RasD is required for normal phototaxis, but not differentiation. Genes and Development, 2000, 14, 1407-1413.	5.9	47
59	The Dictyostelium Mitogen-activated Protein Kinase ERK2 Is Regulated by Ras and cAMP-dependent Protein Kinase (PKA) and Mediates PKA Function. Journal of Biological Chemistry, 1997, 272, 3883-3886.	3.4	45
60	Pseudopod Growth and Evolution during Cell Movement Is Controlled through SCAR/WAVE Dephosphorylation. Current Biology, 2012, 22, 553-561.	3.9	45
61	Chemotaxis in Dictyostelium: how to walk straight using parallel pathways. Current Opinion in Microbiology, 2007, 10, 578-581.	5.1	44
62	A computational method for the coupled solution of reaction–diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis. Journal of Computational Physics, 2016, 309, 207-226.	3.8	39
63	WASP homology sequences in baculoviruses. Trends in Cell Biology, 2001, 11, 286-287.	7.9	38
64	Abi Mutants in Dictyostelium Reveal Specific Roles for the SCAR/WAVE Complex in Cytokinesis. Current Biology, 2008, 18, 203-210.	3.9	38
65	Coordination by Cdc42 of Actin, Contractility, and Adhesion for Melanoblast Movement in Mouse Skin. Current Biology, 2017, 27, 624-637.	3.9	38
66	Self-Generated Gradients Yield Exceptionally Robust Steering Cues. Frontiers in Cell and Developmental Biology, 2020, 8, 133.	3.7	38
67	N-WASP Control of LPAR1 Trafficking Establishes Response to Self-Generated LPA Gradients to Promote Pancreatic Cancer Cell Metastasis. Developmental Cell, 2019, 51, 431-445.e7.	7.0	37
68	The Dictyostelium genome encodes numerous RasGEFs with multiple biological roles. Genome Biology, 2005, 6, R68.	9.6	36
69	Cyclic AMP signalling in Dictyostelium: Gâ€proteins activate separate Ras pathways using specific RasGEFs. EMBO Reports, 2007, 8, 477-482.	4.5	36
70	LPP3 mediates self-generation of chemotactic LPA gradients by melanoma cells. Journal of Cell Science, 2017, 130, 3455-3466.	2.0	36
71	A G-rich sequence element common to Dictyostelium genes which differ radically in their patterns of expression. Developmental Biology, 1992, 152, 188-193.	2.0	35
72	PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection. PLoS Pathogens, 2019, 15, e1007551.	4.7	35

#	Article	IF	CITATIONS
73	RacG Regulates Morphology, Phagocytosis, and Chemotaxis. Eukaryotic Cell, 2006, 5, 1648-1663.	3.4	33
74	A G-protein-coupled chemoattractant receptor recognizes lipopolysaccharide for bacterial phagocytosis. PLoS Biology, 2018, 16, e2005754.	5.6	33
75	Identification of phospholipase B from Dictyostelium discoideum reveals a new lipase family present in mammals, flies and nematodes, but not yeast. Biochemical Journal, 2004, 382, 441-449.	3.7	32
76	Differentiation-inducing-factor dechlorinase, a novel cytosolic dechlorinating enzyme from Dictyostelium discoideum. FEBS Journal, 1992, 208, 531-536.	0.2	30
77	Solving the WAVE function. Nature Cell Biology, 2004, 6, 279-281.	10.3	30
78	A major role for Scar/WAVE-1 downstream of GPVI in platelets. Journal of Thrombosis and Haemostasis, 2007, 5, 535-541.	3.8	30
79	The use of streptavidin conjugates as immunoblot loading controls and mitochondrial markers for use with <i>Dictyostelium discoideum</i> . BioTechniques, 2013, 55, 39-41.	1.8	30
80	A novel Dictyostelium RasGEF is required for normal endocytosis, cell motility and multicellular development. Current Biology, 2000, 10, 1427-1437.	3.9	29
81	Purification and cloning of phosphatidylinositol transfer proteins from Dictyostelium discoideum: homologues of both mammalian PITPs and Saccharomyces cerevisiae Sec14p are found in the same cell. Biochemical Journal, 2000, 347, 837-843.	3.7	26
82	<i>Dictyostelium</i> MEGAPs: F-BAR domain proteins that regulate motility and membrane tubulation in contractile vacuoles. Journal of Cell Science, 2008, 121, 1054-1064.	2.0	26
83	Dictyostelium: an ideal organism for genetic dissection of Ras signalling networks. Biochimica Et Biophysica Acta - General Subjects, 2001, 1525, 262-271.	2.4	25
84	Overflow in science and its implications for trust. ELife, 2015, 4, .	6.0	25
85	Linked regulation of motility and integrin function in activated migrating neutrophils revealed by interference in remodelling of the cytoskeleton. Cytoskeleton, 2003, 54, 135-146.	4.4	24
86	Parasexual genetics of Dictyostelium gene disruptions: identification of a ras pathway using diploids. , 2003, 4, 12.		24
87	Activated factor XI inhibits chemotaxis of polymorphonuclear leukocytes. Journal of Leukocyte Biology, 2011, 90, 923-927.	3.3	24
88	Functional analysis of <i>Dictyostelium</i> IBARa reveals a conserved role of the I-BAR domain in endocytosis. Biochemical Journal, 2011, 436, 45-52.	3.7	23
89	Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation. BMC Genomics, 2015, 16, 80.	2.8	23
90	Pseudopodium dynamics and rapid cell movement inDictyostelium Ras pathway mutants. Cytoskeleton, 2002, 53, 150-162.	4.4	22


#	Article	IF	CITATIONS
91	The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles. Molecular and Cellular Biology, 2016, 36, 1464-1479.	2.3	22
92	The trimeric coiledâ€coil <scp>HSBP</scp> 1 protein promotes <scp>WASH</scp> complex assembly at centrosomes. EMBO Journal, 2018, 37, .	7.8	22
93	Cell–substrate adhesion drives Scar/WAVE activation and phosphorylation by a Ste20-family kinase, which controls pseudopod lifetime. PLoS Biology, 2020, 18, e3000774.	5.6	22
94	Actin on disease – Studying the pathobiology of cell motility using Dictyostelium discoideum. Seminars in Cell and Developmental Biology, 2011, 22, 82-88.	5.0	21
95	Leep1 interacts with PIP3 and the Scar/WAVE complex to regulate cell migration and macropinocytosis. Journal of Cell Biology, 2021, 220, .	5.2	21
96	Cell motility and SCAR localisation in axenically growing Dictyostelium cells. European Journal of Cell Biology, 2006, 85, 1091-1098.	3.6	20
97	Actin-Based Motility: WAVE Regulatory Complex Structure Reopens Old SCARs. Current Biology, 2011, 21, R66-R68.	3.9	20
98	Control of SCAR activity in Dictyostelium discoideum. Biochemical Society Transactions, 2004, 32, 1113-1114.	3.4	17
99	Phosphorylation of Actin-related Protein 2 (Arp2) Is Required for Normal Development and cAMP Chemotaxis in Dictyostelium. Journal of Biological Chemistry, 2013, 288, 2464-2474.	3.4	17
100	Loss of strumpellin in the melanocytic lineage impairs the <scp>WASH</scp> Complex but does not affect coat colour. Pigment Cell and Melanoma Research, 2016, 29, 559-571.	3.3	17
101	Methanol and acriflavine resistance in Dictyostelium are caused by loss of catalase The GenBank accession number for the sequence reported in this paper is AF090443 Microbiology (United) Tj ETQq1 1 0.78-	43 1148 rg BT	/Overlock 10
102	Scar/WAVE3 contributes to motility and plasticity of lamellipodial dynamics but not invasion in three dimensions. Biochemical Journal, 2012, 448, 35-42.	3.7	15
103	ZizB, a novel RacGEF regulates development, cell motility and cytokinesis in Dictyostelium Journal of Cell Science, 2012, 125, 2457-65.	2.0	15
104	Abi Is Required for Modulation and Stability but Not Localization or Activation of the SCAR/WAVE Complex. Eukaryotic Cell, 2013, 12, 1509-1516.	3.4	15
105	Structural Basis of CYRI-B Direct Competition with Scar/WAVE Complex for Rac1. Structure, 2021, 29, 226-237.e4.	3.3	15
106	Replacement of the essential Dictyostelium Arp2 gene by its Entamoeba homologue using parasexual genetics. BMC Genetics, 2007, 8, 28.	2.7	14
107	Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell. Integrative Biology (United Kingdom), 2010, 2, 687.	1.3	14
108	Dogma bites back \hat{a} €" the evidence for branched actin. Trends in Cell Biology, 2011, 21, 2.	7.9	14

#	Article	IF	CITATIONS
109	Correspondence. Trends in Cell Biology, 1999, 9, 211.	7.9	13
110	Gdt2 regulates the transition of Dictyostelium cells from growth to differentiation. BMC Developmental Biology, 2004, 4, 8.	2.1	13
111	Loss of Dictyostelium HSPC300 causes a scar-like phenotype and loss of SCAR protein. BMC Cell Biology, 2009, 10, 13.	3.0	13
112	SCAR/WAVE. Communicative and Integrative Biology, 2013, 6, e27033.	1.4	13
113	Local modulation of chemoattractant concentrations by single cells: dissection using a bulk-surface computational model. Interface Focus, 2016, 6, 20160036.	3.0	13
114	Inference of the drivers of collective movement in two cell types: <i>Dictyostelium</i> and melanoma. Journal of the Royal Society Interface, 2016, 13, 20160695.	3.4	13
115	WASP Restricts Active Rac to Maintain Cells' Front-Rear Polarization. Current Biology, 2019, 29, 4169-4182.e4.	3.9	13
116	Diffusible signal molecules controlling cell differentiation and patterning in <i>Dictyostelium</i> . Development (Cambridge), 1991, 113, 131-139.	2.5	13
117	RÃoâ€Hortega's drawings revisited with fluorescent protein defines a cytoplasmâ€filled channel system of CNS myelin. Journal of Anatomy, 2021, 239, 1241-1255.	1.5	13
118	Osmoregulation: Cyclic GMP and the big squeeze. Current Biology, 1996, 6, 516-518.	3.9	11
119	The Dictyostelium genome: the private life of a social model revealed?. Genome Biology, 2005, 6, 222.	9.6	11
120	Purification and cloning of phosphatidylinositol transfer proteins from Dictyostelium discoideum: homologues of both mammalian PITPs and Saccharomyces cerevisiae Sec14p are found in the same cell. Biochemical Journal, 2000, 347, 837.	3.7	10
121	The identification ofDictyostelium phosphoproteins altered in response to the activation of RasC. Proteomics, 2004, 4, 2629-2639.	2.2	10
122	An Adaptive Moving Mesh Method for Forced Curve Shortening Flow. SIAM Journal of Scientific Computing, 2019, 41, A1170-A1200.	2.8	10
123	Measuring Chemotaxis Using Direct Visualization Microscope Chambers. Methods in Molecular Biology, 2013, 1046, 307-321.	0.9	10
124	Steering yourself by the bootstraps: how cells create their own gradients for chemotaxis. Trends in Cell Biology, 2022, 32, 585-596.	7.9	10
125	Regulation of WASP. Cell, 2004, 118, 140-141.	28.9	9
126	Expression of N471D strumpellin leads to defects in the endolysosomal system. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	9

#	Article	IF	CITATIONS
127	Glycogen synthase kinase and Dictyostelium development: old pathways pointing in new directions?. Trends in Genetics, 1995, 11, 37-39.	6.7	8
128	Genetic Engineering of Dictyostelium discoideum Cells Based on Selection and Growth on Bacteria. Journal of Visualized Experiments, 2019, , .	0.3	8
129	Parasexual Genetics Using Axenic Cells. , 2006, 346, 125-136.		7
130	Screening by changes in stereotypical behavior during cell motility. Scientific Reports, 2019, 9, 8784.	3.3	7
131	The helC gene encodes a putative DEAD-box RNA helicase required for development in Dictyostelium discoideum. Current Biology, 1998, 8, 607-S4.	3.9	6
132	Visualizing Cancer Cell Chemotaxis and Invasion in 2D and 3D. Methods in Molecular Biology, 2016, 1407, 217-228.	0.9	6
133	Mroh1, a lysosomal regulator localised by WASH-generated actin. Journal of Cell Science, 2017, 130, 1785-1795.	2.0	6
134	A Conservative Finite Element ALE Scheme for Mass-Conservative Reaction-Diffusion Equations on Evolving Two-Dimensional Domains. SIAM Journal of Scientific Computing, 2021, 43, B132-B166.	2.8	6
135	Adhesion stimulates Scar/WAVE phosphorylation in mammalian cells. Communicative and Integrative Biology, 2021, 14, 1-4.	1.4	6
136	Melanoblasts Populate the Mouse Choroid Earlier in Development Than Previously Described. , 2020, 61, 33.		5
137	Actin in 2021. Current Biology, 2021, 31, R496-R498.	3.9	5
138	Statistical Inference of The Mechanisms Driving Collective Cell Movement. Journal of the Royal Statistical Society Series C: Applied Statistics, 2017, 66, 869-890.	1.0	4
139	Extracellular Signalling Modulates Scar/WAVE Complex Activity through Abi Phosphorylation. Cells, 2021, 10, 3485.	4.1	4
140	Impact factors: target the funding bodies. Nature, 2003, 423, 585-585.	27.8	3
141	Chemotaxis: TorC before You Akt…. Current Biology, 2008, 18, R864-R866.	3.9	3
142	Predicting cell shapes in melanomas. Pigment Cell and Melanoma Research, 2014, 27, 5-6.	3.3	3
143	Analogies in 3D molecular visualisations: development of a cell biology animation †How cells move – a new interpretation of old data'. Journal of Visual Communication in Medicine, 2020, 43, 35-46.	0.6	3
144	Distinct Interaction Sites of Rac GTPase with WAVE Regulatory Complex Have Nonnredundant Functions in Vivo. SSRN Electronic Journal, 0, , .	0.4	3

#	Article	IF	CITATIONS
145	Cynicism and credulity. Current Biology, 1999, 9, R231.	3.9	2
146	Career postdocs increase scrap heap. Nature, 2011, 471, 578-578.	27.8	2
147	Chemotaxis in Pacreatic Ductal Adenocarcinoma Metastasis: An Unexpected Role of NWASP in Maintaining Self-Generated Gradients and LPA Receptor Recycling. SSRN Electronic Journal, 0, , .	0.4	2
148	Moving the Research Forward: The Best of British Biology Using the Tractable Model System Dictyostelium discoideum. Cells, 2021, 10, 3036.	4.1	2
149	And now it's time for tea. Current Biology, 1996, 6, 99.	3.9	1
150	The talk's the thing. Current Biology, 1997, 7, R331.	3.9	1
151	The right stuff. Current Biology, 1997, 7, R665.	3.9	1
152	Dictyostelium Chemotaxis: Fascism Through the Back Door?. Current Biology, 2003, 13, R353-R354.	3.9	1
153	How a paper on RAC set the standard. Nature Reviews Molecular Cell Biology, 2012, 13, 66-66.	37.0	1
154	WASH complex conservation: don't WASH away the family!. Trends in Cell Biology, 2013, 23, 519-520.	7.9	1
155	The Chemoattractant Glorin Is Inactivated by Ester Cleavage during Early Multicellular Development of Polysphondylium pallidum. ACS Chemical Biology, 2018, 13, 1506-1513.	3.4	1
156	Assembly of the Actin Catalyst WASP by Giant SALR Cluster Formation. Advanced Theory and Simulations, 2019, 2, 1800203.	2.8	1
157	Under-Agarose and Migration Assays for Dictyostelium. Methods in Molecular Biology, 2022, 2438, 467-482.	0.9	1
158	The art of MBoC. Trends in Genetics, 1996, 12, 430.	6.7	0
159	The enemy within. Current Biology, 1997, 7, R59.	3.9	0
160	Keeping it in the family. Current Biology, 1998, 8, R401.	3.9	0
161	PKB starts to jump. Trends in Genetics, 1999, 15, 260.	6.7	0
162	Identification of Phosphatidylinositol transfer proteins from Dictyostelium. Biochemical Society Transactions, 1999, 27, A102-A102.	3.4	0

#	Article	IF	CITATIONS
163	Too much of a good thing?. Current Biology, 2000, 10, R253.	3.9	0
164	The PKB that doesnâ \in ^m t need to jump. Trends in Genetics, 2000, 16, 441.	6.7	0
165	The Whole Organism, and nothing but the Organism. Cell, 2001, 107, 279-281.	28.9	0
166	Robert Insall. Current Biology, 2003, 13, R167-R168.	3.9	0
167	Protein conformation: through a lens, darkly. Biochemical Journal, 2003, 372, e1-e2.	3.7	0
168	Scar, WASp and the Arp2/3 Complex inDictyostelium Migration. , 0, , 247-260.		0
169	Presidential candidates failed peer-review test. Nature, 2004, 432, 439-439.	27.8	0
170	Monitor – biology. Drug Discovery Today, 2004, 9, 93-97.	6.4	0
171	In Vitro Aberrant Neutrophil Migration In COPD Is A Generic Phenomena And Is Not Related To Surface-Expression Of Chemoattractant Receptors Or Systemic Inflammation. , 2011, , .		0
172	Melanomas' fatal attraction to lysophosphatidic acid trails: a new prognostic and therapeutic approach?. Melanoma Management, 2015, 2, 97-100.	0.5	0
173	Science careers — improve your effectiveness but keep your passion. Current Biology, 2018, 28, R1078-R1079.	3.9	0
174	LPP3, LPA and self-generated chemotactic gradients in biomedical science. Communicative and Integrative Biology, 2018, 11, e1398870.	1.4	0
175	Truth or beauty? Data and philosophy of cell biology. Current Biology, 2020, 30, R245-R246.	3.9	0
176	Editorial overview: How cells extract information from environmental cues. Current Opinion in Cell Biology, 2021, 72, iii-iv.	5.4	0
177	The Rac GEF ZizB regulates development, cell motility and cytokinesis in Dictyostelium. Development (Cambridge), 2012, 139, e1-e1.	2.5	0
178	p21-Activated Kinases Regulate Directional Migration and Cytoskeletal Organization in Human Neutrophils. Blood, 2012, 120, 834-834.	1.4	0
179	WAVE complex regulation by force. Nature Cell Biology, 2021, 23, 1111-1112.	10.3	0
180	Title is missing! 2020. 18. e3000774.		0

