
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9522413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms that contribute to differences in motor performance between young and old adults. Journal of Electromyography and Kinesiology, 2003, 13, 1-12.	1.7	455
2	Multiple Features of Motor-Unit Activity Influence Force Fluctuations During Isometric Contractions. Journal of Neurophysiology, 2003, 90, 1350-1361.	1.8	203
3	Practice reduces motor unit discharge variability in a hand muscle and improves manual dexterity in old adults. Journal of Applied Physiology, 2005, 98, 2072-2080.	2.5	185
4	Children achieve adult-like sensory integration during stance at 12-years-old. Gait and Posture, 2006, 23, 455-463.	1.4	167
5	Patellar taping increases vastus medialis oblique activity in the presence of patellofemoral pain. Journal of Electromyography and Kinesiology, 2004, 14, 495-504.	1.7	122
6	Rectification of the EMG Signal Impairs the Identification of Oscillatory Input to the Muscle. Journal of Neurophysiology, 2010, 103, 1093-1103.	1.8	111
7	Aging and Variability of Voluntary Contractions. Exercise and Sport Sciences Reviews, 2011, 39, 77-84.	3.0	103
8	Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions. Experimental Brain Research, 2009, 197, 35-47.	1.5	96
9	Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications. Human Movement Science, 2018, 59, 46-55.	1.4	93
10	The 1- to 2-Hz oscillations in muscle force are exacerbated by stress, especially in older adults. Journal of Applied Physiology, 2004, 97, 225-235.	2.5	91
11	Modeling Variability of Force During Isometric Contractions of the Quadriceps Femoris. Journal of Motor Behavior, 2002, 34, 67-81.	0.9	86
12	Fluctuations in acceleration during voluntary contractions lead to greater impairment of movement accuracy in old adults. Journal of Applied Physiology, 2003, 95, 373-384.	2.5	74
13	Enhanced Somatosensory Feedback Reduces Prefrontal Cortical Activity During Walking in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1422-1428.	3.6	64
14	Rapid Communication. Taiji Training Improves Knee Extensor Strength and Force Control in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2003, 58, M763-M766.	3.6	62
15	Age and contraction type influence motor output variability in rapid discrete tasks. Journal of Applied Physiology, 2002, 93, 489-498.	2.5	60
16	Different Neural Adjustments Improve Endpoint Accuracy With Practice in Young and Old Adults. Journal of Neurophysiology, 2007, 97, 3340-3350.	1.8	54
17	Greater amount of visual information exacerbates force control in older adults during constant isometric contractions. Experimental Brain Research, 2011, 213, 351-361.	1.5	54
18	Visual Feedback Attenuates Force Fluctuations Induced by a Stressor. Medicine and Science in Sports and Exercise, 2005, 37, 2126-2133.	0.4	52

#	Article	IF	CITATIONS
19	Motor output is more variable during eccentric compared with concentric contractions. Medicine and Science in Sports and Exercise, 2002, 34, 1773-1778.	0.4	50
20	Low-Frequency Oscillations and Control of the Motor Output. Frontiers in Physiology, 2017, 8, 78.	2.8	44
21	Increased Force Variability in Chronic Stroke: Contributions of Force Modulation below 1 Hz. PLoS ONE, 2013, 8, e83468.	2.5	43
22	Force Control Is Related to Low-Frequency Oscillations in Force and Surface EMG. PLoS ONE, 2014, 9, e109202.	2.5	42
23	Greater amount of visual feedback decreases force variability by reducing force oscillations from 0–1 and 3–7ÂHz. European Journal of Applied Physiology, 2010, 108, 935-943.	2.5	39
24	Frequency Modulation of Motor Unit Discharge Has Task-Dependent Effects on Fluctuations in Motor Output. Journal of Neurophysiology, 2005, 94, 2878-2887.	1.8	37
25	Modulation of Force below 1 Hz: Age-Associated Differences and the Effect of Magnified Visual Feedback. PLoS ONE, 2013, 8, e55970.	2.5	37
26	Beta-band oscillations in the supplementary motor cortex are modulated by levodopa and associated with functional activity in the basal ganglia. NeuroImage: Clinical, 2018, 19, 559-571.	2.7	37
27	Site-specific differences in the association between plantar tactile perception and mobility function in older adults. Frontiers in Aging Neuroscience, 2014, 6, 68.	3.4	35
28	Lower Extremity Muscle Strength and Force Variability in Persons With Parkinson Disease. Journal of Neurologic Physical Therapy, 2019, 43, 56-62.	1.4	34
29	Increased voluntary drive is associated with changes in common oscillations from 13 to 60 Hz of interference but not rectified electromyography. Muscle and Nerve, 2010, 42, 348-354.	2.2	32
30	Aging and movement errors when lifting and lowering light loads. Age, 2011, 33, 393-407.	3.0	32
31	Motor Output Variability Impairs Driving Ability in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1676-1681.	3.6	32
32	Discharge rate during low-force isometric contractions influences motor unit coherence below 15ÂHz but not motor unit synchronization. Experimental Brain Research, 2007, 178, 285-295.	1.5	31
33	Synchronous EMG Activity in the Piper Frequency Band Reveals the Corticospinal Demand of Walking Tasks. Annals of Biomedical Engineering, 2013, 41, 1778-1786.	2.5	31
34	Force Control Is Greater in the Upper Compared With the Lower Extremity. Journal of Motor Behavior, 2003, 35, 322-324.	0.9	30
35	Interpreting Prefrontal Recruitment During Walking After Stroke: Influence of Individual Differences in Mobility and Cognitive Function. Frontiers in Human Neuroscience, 2019, 13, 194.	2.0	29
36	Detection of postural control in early Parkinson's disease: Clinical testing vs. modulation of center of pressure. PLoS ONE, 2021, 16, e0245353.	2.5	29

#	Article	IF	CITATIONS
37	Coherence at 16-32 Hz Can Be Caused by Short-Term Synchrony of Motor Units. Journal of Neurophysiology, 2005, 94, 105-118.	1.8	26
38	Near-Infrared Light Therapy to Attenuate Strength Loss After Strenuous Resistance Exercise. Journal of Athletic Training, 2015, 50, 45-50.	1.8	25
39	Strength or Motor Control: What Matters in High-Functioning Stroke?. Frontiers in Neurology, 2018, 9, 1160.	2.4	24
40	Neural control of the lips differs for young and older adults following a perturbation. Experimental Brain Research, 2010, 206, 319-327.	1.5	23
41	Motor control differs for increasing and releasing force. Journal of Neurophysiology, 2016, 115, 2924-2930.	1.8	23
42	Identification of Oscillations in Muscle Activity From Surface EMG: Reply to Halliday and Farmer. Journal of Neurophysiology, 2010, 103, 3548-3549.	1.8	22
43	Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes. Expert Review of Neurotherapeutics, 2020, 20, 319-331.	2.8	22
44	Aging and limb alter the neuromuscular control of goal-directed movements. Experimental Brain Research, 2014, 232, 1759-1771.	1.5	21
45	Increased Force Variability Is Associated with Altered Modulation of the Motorneuron Pool Activity in Autism Spectrum Disorder (ASD). International Journal of Molecular Sciences, 2017, 18, 698.	4.1	20
46	Timing variability and not force variability predicts the endpoint accuracy of fast and slow isometric contractions. Experimental Brain Research, 2010, 202, 189-202.	1.5	19
47	Magnified visual feedback exacerbates positional variability in older adults due to altered modulation of the primary agonist muscle. Experimental Brain Research, 2012, 222, 355-364.	1.5	19
48	Altered activation of the tibialis anterior in individuals with Pompe disease: Implications for motor unit dysfunction. Muscle and Nerve, 2015, 51, 877-883.	2.2	19
49	Processing of visual information compromises the ability of older adults to control novel fine motor tasks. Experimental Brain Research, 2015, 233, 3475-3488.	1.5	19
50	The interaction of respiration and visual feedback on the control of force and neural activation of the agonist muscle. Human Movement Science, 2011, 30, 1022-1038.	1.4	18
51	Altered activation of the antagonist muscle during practice compromises motor learning in older adults. Journal of Neurophysiology, 2014, 112, 1010-1019.	1.8	18
52	Reducing task difficulty during practice improves motor learning in older adults. Experimental Gerontology, 2014, 57, 168-174.	2.8	18
53	Age-associated impairement in endpoint accuracy of goal-directed contractions performed with two fingers is due to altered activation of the synergistic muscles. Experimental Gerontology, 2012, 47, 519-526.	2.8	17
54	Voluntary reduction of force variability via modulation of low-frequency oscillations. Experimental Brain Research, 2017, 235, 2717-2727.	1.5	16

EVANGELOS A CHRISTOU

#	Article	IF	CITATIONS
55	Motor planning perturbation: muscle activation and reaction time. Journal of Neurophysiology, 2018, 120, 2059-2065.	1.8	16
56	Age-Associated Differences in Positional Variability Are Greater With the Lower Limb. Journal of Motor Behavior, 2011, 43, 357-360.	0.9	15
57	Practice improves motor control in older adults by increasing the motor unit modulation from 13 to 30 Hz. Journal of Neurophysiology, 2013, 110, 2393-2401.	1.8	14
58	Motor Impairments in Transient Ischemic Attack Increase the Odds of a Subsequent Stroke: A Meta-Analysis. Frontiers in Neurology, 2017, 8, 243.	2.4	14
59	Integration of visual feedback and motor learning: Corticospinal vs. corticobulbar pathway. Human Movement Science, 2018, 58, 88-96.	1.4	14
60	Force dysmetria in spinocerebellar ataxia 6 correlates with functional capacity. Frontiers in Human Neuroscience, 2015, 09, 184.	2.0	12
61	Age-associated differences in motor output variability and coordination during the simultaneous dorsiflexion of both feet. Somatosensory & Motor Research, 2017, 34, 96-101.	0.9	12
62	EMG synchrony to assess impaired corticomotor control of locomotion after stroke. Journal of Electromyography and Kinesiology, 2017, 37, 35-40.	1.7	12
63	QUANTIFICATION OF TAIJI LEARNING IN OLDER ADULTS. Journal of the American Geriatrics Society, 2003, 51, 1186-1187.	2.6	11
64	Ankle variability is amplified in older adults due to lower EMG power from 30–60Hz. Human Movement Science, 2012, 31, 1366-1378.	1.4	11
65	Voluntary control of forward leaning posture relates to low-frequency neural inputs to the medial gastrocnemius muscle. Gait and Posture, 2019, 68, 187-192.	1.4	11
66	Neuromuscular control of goal-directed ankle movements differs for healthy children and adults. European Journal of Applied Physiology, 2014, 114, 1889-1899.	2.5	10
67	Motor plan differs for young and older adults during similar movements. Journal of Neurophysiology, 2017, 117, 1483-1488.	1.8	10
68	Cognitive and motor deficits contribute to longer braking time in stroke. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 7.	4.6	10
69	Discharge rate modulation of trapezius motor units differs for voluntary contractions and instructed muscle rest. Experimental Brain Research, 2011, 208, 203-215.	1.5	9
70	Motor output oscillations with magnification of visual feedback in older adults. Neuroscience Letters, 2017, 647, 8-13.	2.1	9
71	Serum and Urinary N-Terminal Pro-brain Natriuretic Peptides as Biomarkers for Bronchopulmonary Dysplasia of Preterm Neonates. Frontiers in Pediatrics, 2020, 8, 588738.	1.9	9
72	Quantitative Separation of Tremor and Ataxia in Essential Tremor. Annals of Neurology, 2020, 88, 375-387.	5.3	9

#	Article	IF	CITATIONS
73	Age-associated increase in postural variability relate to greater low-frequency center of pressure oscillations. Gait and Posture, 2021, 85, 103-109.	1.4	9
74	Force-Control vs. Strength Training: The Effect on Gait Variability in Stroke Survivors. Frontiers in Neurology, 2021, 12, 667340.	2.4	9
75	Time but not Force Is Transferred Between Ipsilateral Upper and Lower Limbs. Journal of Motor Behavior, 2008, 40, 186-189.	0.9	8
76	Transient shifts in frontal and parietal circuits scale with enhanced visual feedback and changes in force variability and error. Journal of Neurophysiology, 2013, 109, 2205-2215.	1.8	8
77	Photobiomodulation delays the onset of skeletal muscle fatigue in a dose-dependent manner. Lasers in Medical Science, 2016, 31, 1325-1332.	2.1	8
78	Neuromuscular variability and spatial accuracy in children and older adults. Journal of Electromyography and Kinesiology, 2018, 41, 27-33.	1.7	8
79	Functional motor control deficits in older FMR1 premutation carriers. Experimental Brain Research, 2019, 237, 2269-2278.	1.5	8
80	Increased visual information gain improves bimanual force coordination. Neuroscience Letters, 2015, 608, 23-27.	2.1	7
81	Differential contribution of visual and auditory information to accurately predict the direction and rotational motion of a visual stimulus. Applied Physiology, Nutrition and Metabolism, 2016, 41, 244-248.	1.9	7
82	Sex differences in spatial accuracy relate to the neural activation of antagonistic muscles in young adults. Experimental Brain Research, 2017, 235, 2425-2436.	1.5	7
83	Rehabilitation with accurate adaptability walking tasks or steady state walking: A randomized clinical trial in adults post-stroke. Clinical Rehabilitation, 2021, 35, 1196-1206.	2.2	7
84	Reply to Boonstra: The Nature of Periodic Input to the Muscle. Journal of Neurophysiology, 2010, 104, 577-577.	1.8	6
85	Sensory and motor cortex function contributes to symptom severity in spinocerebellar ataxia type 6. Brain Structure and Function, 2017, 222, 1039-1052.	2.3	6
86	Visual information processing in older adults: reaction time and motor unit pool modulation. Journal of Neurophysiology, 2018, 120, 2630-2639.	1.8	6
87	Motor impairments in transient ischemic attack increase the odds of a positive diffusion-weighted imaging: A meta-analysis. Restorative Neurology and Neuroscience, 2019, 37, 509-521.	0.7	6
88	Control of oscillatory force tasks: Low-frequency oscillations in force and muscle activity. Human Movement Science, 2019, 64, 89-100.	1.4	5
89	Temporal Invariance in SCA6 Is Related to Smaller Cerebellar Lobule VI and Greater Disease Severity. Journal of Neuroscience, 2020, 40, 1722-1731.	3.6	5
90	Reaction to a Visual Stimulus: Anticipation with Steady and Dynamic Contractions. Journal of Human Kinetics, 2019, 69, 17-27.	1.5	5

#	Article	IF	CITATIONS
91	Endpoint accuracy of goal-directed ankle movements correlates to over-ground walking in stroke. Clinical Neurophysiology, 2019, 130, 1008-1016.	1.5	4
92	Visual load and variability of muscle activation: Effects on reactive driving of older adults. Human Movement Science, 2019, 63, 172-181.	1.4	4
93	Motor Control and Achilles Tendon Adaptation in Adolescence: Effects of Sport Participation and Maturity. Journal of Human Kinetics, 2021, 76, 101-116.	1.5	4
94	Postural control in adolescent boys and girls before the age of peak height velocity: Effects of task difficulty. Gait and Posture, 2022, 92, 461-466.	1.4	4
95	Long-term adaptations differ for shortening and lengthening contractions. European Journal of Applied Physiology, 2012, 112, 3709-3720.	2.5	3
96	High-gain visual feedback exacerbates ankle movement variability in children. Experimental Brain Research, 2015, 233, 1597-1606.	1.5	3
97	The Effect of Propulsion Style on Wrist Movement Variability During the Push Phase After a Bout of Fatiguing Propulsion. PM and R, 2017, 9, 265-274.	1.6	3
98	Temporal but not spatial dysmetria relates to disease severity in FA. Journal of Neurophysiology, 2020, 123, 718-725.	1.8	3
99	The effect of wheelchair propulsion style on changes in time spent in extreme wrist orientations after a bout of fatiguing propulsion. Ergonomics, 2017, 60, 1425-1434.	2.1	2
100	Motor transfer from the corticospinal to the corticobulbar pathway. Physiology and Behavior, 2018, 191, 155-161.	2.1	1
101	Speed but not amplitude of visual feedback exacerbates force variability in older adults. Experimental Brain Research, 2018, 236, 2563-2571.	1.5	1
102	Force Variability Is Related To Low-frequency Oscillations In Force And EMG Burst. Medicine and Science in Sports and Exercise, 2014, 46, 674.	0.4	1
103	Sex differences in cognitive-motor components of braking in older adults. Experimental Brain Research, 2022, 240, 1045-1055.	1.5	1
104	Suppression of Axial Tremor by Deep Brain Stimulation in Patients with Essential Tremor: Effects on Gait and Balance Measures. Tremor and Other Hyperkinetic Movements, 2022, 12, .	2.0	1
105	Older adults use a motor plan that is detrimental to endpoint control. Scientific Reports, 2021, 11, 7562.	3.3	0
106	Motor Training After Stroke: A Novel Approach for Driving Rehabilitation. Frontiers in Neurology, 0, 13, .	2.4	0