List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/952241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preneoplastic somatic mutations including <i>MYD88</i> ^{L265P} in lymphoplasmacytic lymphoma. Science Advances, 2022, 8, eabl4644.	10.3	21
2	Transient Inhibition of the JAK/STAT Pathway Prevents B-ALL Development in Genetically Predisposed Mice. Cancer Research, 2022, 82, 1098-1109.	0.9	9
3	Towards the prevention of childhood leukemia. Oncoscience, 2022, 9, 17-19.	2.2	0
4	Childhood B-Cell Preleukemia Mouse Modeling. International Journal of Molecular Sciences, 2022, 23, 7562.	4.1	2
5	Conditional expression of HGAL leads to the development of diffuse large B-cell lymphoma in mice. Blood, 2021, 137, 1741-1753.	1.4	6
6	Infectious triggers and novel therapeutic opportunities in childhood B cell leukaemia. Nature Reviews Immunology, 2021, 21, 570-581.	22.7	25
7	An immune window of opportunity to prevent childhood B cell leukemia. Trends in Immunology, 2021, 42, 371-374.	6.8	8
8	The Second Oncogenic Hit Determines the Cell Fate of ETV6-RUNX1 Positive Leukemia. Frontiers in Cell and Developmental Biology, 2021, 9, 704591.	3.7	19
9	Leukemia Stem Cells: Concept and Implications. Methods in Molecular Biology, 2021, 2185, 25-37.	0.9	2
10	Leukemia Stem Cell Drug Discovery. Methods in Molecular Biology, 2021, 2185, 39-48.	0.9	0
11	Editorial: Epigenetic Reprogramming and Cancer Development Volume II. Frontiers in Cell and Developmental Biology, 2021, 9, 823503.	3.7	2
12	Risk Factors for Childhood Leukemia: Radiation and Beyond. Frontiers in Public Health, 2021, 9, 805757.	2.7	14
13	Are Leukaemic Stem Cells Restricted to a Single Cell Lineage?. International Journal of Molecular Sciences, 2020, 21, 45.	4.1	1
14	Cell Fate Decisions: The Role of Transcription Factors in Early B-cell Development and Leukemia. Blood Cancer Discovery, 2020, 1, 224-233.	5.0	17
15	An intact gut microbiome protects genetically predisposed mice against leukemia. Blood, 2020, 136, 2003-2017.	1.4	64
16	Inhibition of inflammatory signaling in Pax5 mutant cells mitigates B-cell leukemogenesis. Scientific Reports, 2020, 10, 19189.	3.3	15
17	Lineage Decision-Making within Normal Haematopoietic and Leukemic Stem Cells. International Journal of Molecular Sciences, 2020, 21, 2247.	4.1	2
18	Dnmt1 links BCR-ABLp210 to epigenetic tumor stem cell priming in myeloid leukemia. Leukemia, 2019, 33, 249-278.	7.2	18

#	Article	IF	CITATIONS
19	LMO2 Confers Synthetic Lethality to PARP Inhibition in DLBCL. Cancer Cell, 2019, 36, 237-249.e6.	16.8	50
20	Novel <i>ETV6â€RUNX1</i> Mouse Model to Study the Role of ELFâ€MF in Childhood Bâ€Acute Lymphoblastic Leukemia: a Pilot Study. Bioelectromagnetics, 2019, 40, 343-353.	1.6	12
21	Interplay between HGAL and Grb2 proteins regulates B-cell receptor signaling. Blood Advances, 2019, 3, 2286-2297.	5.2	7
22	Infectious stimuli promote malignant B-cell acute lymphoblastic leukemia in the absence of AID. Nature Communications, 2019, 10, 5563.	12.8	21
23	Loss of Pax5 Exploits Sca1-BCR-ABLp190 Susceptibility to Confer the Metabolic Shift Essential for pB-ALL. Cancer Research, 2018, 78, 2669-2679.	0.9	37
24	Lineage choice decisions in B-cell development and leukemia. Stem Cell Investigation, 2018, 5, 46-46.	3.0	0
25	Epigenetic Priming in Cancer Initiation. Trends in Cancer, 2018, 4, 408-417.	7.4	81
26	The Making of Leukemia. International Journal of Molecular Sciences, 2018, 19, 1494.	4.1	12
27	T-cell leukemogenesis is an inappropriate lineage decision-making process: implications for precision oncology. Molecular and Cellular Oncology, 2018, 5, e1497860.	0.7	1
28	Lmo2 expression defines tumor cell identity during Tâ€cell leukemogenesis. EMBO Journal, 2018, 37, .	7.8	32
29	A Tumor Suppressor Role for Bank1 in B-Cell Precursor Acute Lymphoblastic Leukemia. Blood, 2018, 132, 1333-1333.	1.4	0
30	Metabolic gatekeeper function of B-lymphoid transcription factors. Nature, 2017, 542, 479-483.	27.8	175
31	Prolonged intracellular accumulation of light-inducible nanoparticles in leukemia cells allows their remote activation. Nature Communications, 2017, 8, 15204.	12.8	20
32	Infection Exposure Promotes <i>ETV6-RUNX1</i> Precursor B-cell Leukemia via Impaired H3K4 Demethylases. Cancer Research, 2017, 77, 4365-4377.	0.9	76
33	Crebbp loss cooperates with Bcl2 overexpression to promote lymphoma in mice. Blood, 2017, 129, 2645-2656.	1.4	84
34	Activation-induced cytidine deaminase prevents pro-B cell acute lymphoblastic leukemia by functioning as a negative regulator in Rag1 deficient pro-B cells. Oncotarget, 2017, 8, 75797-75807.	1.8	4
35	Modeling the process of childhood <i>ETV6-RUNX1</i> B-cell leukemias. Oncotarget, 2017, 8, 102674-102680.	1.8	8
36	Could Vitamin D Analogues Be Used to Target Leukemia Stem Cells?. International Journal of Molecular Sciences, 2016, 17, 889.	4.1	2

#	Article	IF	CITATIONS
37	Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics. Nature Communications, 2016, 7, 11889.	12.8	42
38	Extremely lowâ€frequency magnetic fields and risk of childhood leukemia: A risk assessment by the ARIMMORA consortium. Bioelectromagnetics, 2016, 37, 183-189.	1.6	31
39	Comparative dosimetry for children and rodents exposed to extremely lowâ€frequency magnetic fields. Bioelectromagnetics, 2016, 37, 310-322.	1.6	3
40	GEMMs addressing Pax5 loss-of-function in childhood pB-ALL. European Journal of Medical Genetics, 2016, 59, 166-172.	1.3	5
41	Post-transcriptional Modifications Contribute to the Upregulation of Cyclin D2 in Multiple Myeloma. Clinical Cancer Research, 2016, 22, 207-217.	7.0	21
42	Absence of Evidence Implicating Hematopoietic Stem Cells As Common Progenitors for DLBCL Mutations. Blood, 2016, 128, 4107-4107.	1.4	1
43	How tumour cell identity is established?. Seminars in Cancer Biology, 2015, 32, 1-2.	9.6	7
44	Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1116-25.	7.1	307
45	Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Seminars in Cancer Biology, 2015, 35, S25-S54.	9.6	468
46	Infection Exposure Is a Causal Factor in B-cell Precursor Acute Lymphoblastic Leukemia as a Result of <i>Pax5</i> -Inherited Susceptibility. Cancer Discovery, 2015, 5, 1328-1343.	9.4	117
47	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220
48	Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy. Seminars in Cancer Biology, 2015, 32, 3-9.	9.6	22
49	Infection causes childhood leukemia. Aging, 2015, 7, 607-608.	3.1	7
50	Is lineage decision-making restricted during tumoral reprograming of haematopoietic stem cells?. Oncotarget, 2015, 6, 43326-43341.	1.8	9
51	Early epigenetic cancer decisions. Biological Chemistry, 2014, 395, 1315-1320.	2.5	7
52	Identification of cancer initiating cells in <i>K-Ras</i> driven lung adenocarcinoma. Proceedings of the United States of America, 2014, 111, 255-260.	7.1	151
53	Hit-and-run lymphomagenesis by theBcl6oncogene. Cell Cycle, 2014, 13, 1831-1832.	2.6	6
54	Lineage-specific function of Engrailed-2 in the progression of chronic myelogenous leukemia to T-cell blast crisis. Cell Cycle, 2014, 13, 1717-1726.	2.6	7

#	Article	IF	CITATIONS
55	Genetically engineered mouse models of human B-cell precursor leukemias. Cell Cycle, 2014, 13, 2836-2846.	2.6	12
56	Transient expression of Bcl6 is sufficient for oncogenic function and induction of mature B-cell lymphoma. Nature Communications, 2014, 5, 3904.	12.8	73
57	p53 restoration kills primitive leukemia cells in vivo and increases survival of leukemic mice. Cell Cycle, 2013, 12, 122-132.	2.6	16
58	Function of oncogenes in cancer development: a changing paradigm. EMBO Journal, 2013, 32, 1502-1513.	7.8	84
59	Cancer Stem Cells and Modeling Cancer in the Mouse. , 2013, , 227-234.		0
60	Back to the beginning: The initiation of cancer. BioEssays, 2013, 35, 413-413.	2.5	3
61	Germinal centre protein HGAL promotes lymphoid hyperplasia and amyloidosis via BCR-mediated Syk activation. Nature Communications, 2013, 4, 1338.	12.8	37
62	Genetic background affects susceptibility to tumoral stem cell reprogramming. Cell Cycle, 2013, 12, 2505-2509.	2.6	3
63	A novel molecular mechanism involved in multiple myeloma development revealed by targeting MafB to haematopoietic progenitors. EMBO Journal, 2012, 31, 3704-3717.	7.8	62
64	Understanding telomerase in cancer stem cell biology. Cell Cycle, 2012, 11, 1479-1480.	2.6	9
65	MALT lymphoma meets stem cells. Cell Cycle, 2012, 11, 2961-2962.	2.6	7
66	The cellular architecture of multiple myeloma. Cell Cycle, 2012, 11, 3715-3717.	2.6	12
67	Loss of p53 exacerbates multiple myeloma phenotype by facilitating the reprogramming of hematopoietic stem/progenitor cells to malignant plasma cells by <i><i>MafB</i></i> . Cell Cycle, 2012, 11, 3896-3900.	2.6	23
68	Expression of <i>MALT1</i> oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10534-10539.	7.1	73
69	Identification of LMO2 transcriptome and interactome in diffuse large B-cell lymphoma. Blood, 2012, 119, 5478-5491.	1.4	39
70	Essential role for telomerase in chronic myeloid leukemia induced by BCR-ABL in mice. Oncotarget, 2012, 3, 261-266.	1.8	23
71	Stem cell aging and cancer: Immortal but vulnerable. Cell Cycle, 2011, 10, 2823-2824.	2.6	3
72	Acute lymphoblastic leukemia and developmental biology. Cell Cycle, 2011, 10, 3473-3486.	2.6	24

#	Article	IF	CITATIONS
73	Homeobox NKX2-3 Is Over-Expressed in Human B-Cell Lymphomas and Drives Marginal Zone B-Cell Lymphomagenesis in Mice. Blood, 2011, 118, 260-260.	1.4	0
74	HGAL, a germinal center specific protein, decreases lymphoma cell motility by modulation of the RhoA signaling pathway. Blood, 2010, 116, 5217-5227.	1.4	28
75	Cancer as a reprogramming-like disease: Implications in tumor development and treatment. Seminars in Cancer Biology, 2010, 20, 93-97.	9.6	39
76	Getting to the stem of cancer. Seminars in Cancer Biology, 2010, 20, 63-64.	9.6	12
77	Effect of an antioxidant functional food beverage on exercise-induced oxidative stress: A long-term and large-scale clinical intervention study. Toxicology, 2010, 278, 101-111.	4.2	16
78	Bcl2 is not required for the development and maintenance of leukemia stem cells in mice. Carcinogenesis, 2010, 31, 1292-1297.	2.8	8
79	Polycomb group proteins. Cell Cycle, 2010, 9, 2704-2712.	2.6	7
80	The evolution of cancer modeling: the shadow of stem cells. DMM Disease Models and Mechanisms, 2010, 3, 149-155.	2.4	15
81	New functions for the Snail family of transcription factors: Two-faced proteins. Cell Cycle, 2010, 9, 2731-2739.	2.6	24
82	TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Molecular Cancer, 2010, 9, 194.	19.2	239
83	The age of the target cell affects B-cell leukaemia malignancy. Aging, 2010, 2, 908-913.	3.1	14
84	Stem-cell driven cancer: "Hands-off" regulation of cancer development. Cell Cycle, 2009, 8, 1314-1318.	2.6	36
85	Bâ€cell acute lymphoblastic leukaemia: towards understanding its cellular origin. BioEssays, 2009, 31, 600-609.	2.5	81
86	Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO Journal, 2009, 28, 8-20.	7.8	125
87	Aspects of antioxidant foods and supplements in health and disease. Nutrition Reviews, 2009, 67, S140-S144.	5.8	81
88	The Crossroads of Oncogenesis and Metastasis. New England Journal of Medicine, 2009, 360, 297-299.	27.0	52
89	The Emerging Picture of Human Breast Cancer as a Stem Cell-based Disease. Stem Cell Reviews and Reports, 2008, 4, 67-79.	5.6	29
90	Players in human liposarcoma: JUN joins the cast. Cancer Biology and Therapy, 2008, 7, 1302-1304.	3.4	2

#	Article	IF	CITATIONS
91	FUS-DDIT3 Prevents the Development of Adipocytic Precursors in Liposarcoma by Repressing PPARÎ ³ and C/EBPα and Activating eIF4E. PLoS ONE, 2008, 3, e2569.	2.5	44
92	Fat-specific FUS-DDIT3-transgenic mice establish PPARÂ inactivation is required to liposarcoma development. Carcinogenesis, 2007, 28, 2069-2073.	2.8	15
93	Adipose tissue mass is modulated by SLUG (SNAI2). Human Molecular Genetics, 2007, 16, 2972-2986.	2.9	60
94	Snail Family Transcription Factors Are Implicated in Thyroid Carcinogenesis. American Journal of Pathology, 2007, 171, 1037-1046.	3.8	78
95	Function of the Zinc-Finger Transcription FactorSNAI2in Cancer and Development. Annual Review of Genetics, 2007, 41, 41-61.	7.6	170
96	The theoretical basis of cancerâ€stemâ€cellâ€based therapeutics of cancer: can it be put into practice?. BioEssays, 2007, 29, 1269-1280.	2.5	81
97	BCR-ABL and Human Cancer. , 2007, , 3-34.		7
98	Mouse cDNA microarray analysis uncovers Slug targets in mouse embryonic fibroblasts. Genomics, 2006, 87, 113-118.	2.9	34
99	Killing Time for Cancer Stem Cells (CSC): Discovery and Development of Selective CSC Inhibitors. Current Medicinal Chemistry, 2006, 13, 1719-1725.	2.4	28
100	SLUG in cancer development. Oncogene, 2005, 24, 3073-3082.	5.9	100
101	Of Man in Mouse: Modelling Human Cancer Genotype-Phenotype Correlations in Mice. Current Genomics, 2005, 6, 81-88.	1.6	4
102	Immortalized Mouse Mammary Fibroblasts Lacking Dioxin Receptor Have Impaired Tumorigenicity in a Subcutaneous Mouse Xenograft Model. Journal of Biological Chemistry, 2005, 280, 28731-28741.	3.4	87
103	Cancer development induced by graded expression of Snail in mice. Human Molecular Genetics, 2005, 14, 3449-3461.	2.9	67
104	Improving the Development on New Cancer Treatments: Challenges and Opportunities. Drug Design Reviews Online, 2005, 2, 341-348.	0.7	0
105	The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene, 2003, 22, 4205-4211.	5.9	83
106	SLUG (SNAI2) deletions in patients with Waardenburg disease. Human Molecular Genetics, 2002, 11, 3231-3236.	2.9	211
107	Expression of the FUS domain restores liposarcoma development in CHOP transgenic mice. Oncogene, 2002, 21, 1679-1684.	5.9	27
108	Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood, 2002, 100, 1274-86.	1.4	64

#	Article	IF	CITATIONS
109	The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends in Genetics, 1994, 10, 315-320.	6.7	338
110	In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature, 1994, 372, 642-645.	27.8	302
111	Expression of the FUS domain restores liposarcoma development in CHOP transgenic mice. , 0, .		1