Yamin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9522244/publications.pdf

Version: 2024-02-01

567281 839539 1,377 20 15 18 citations h-index g-index papers 20 20 20 1502 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015, 490, 72-83.	8.2	194
2	Graphene oxide-modified zinc anode for rechargeable aqueous batteries. Chemical Engineering Science, 2019, 194, 142-147.	3.8	152
3	Unveiling the Origin of Alloy-Seeded and Nondendritic Growth of Zn for Rechargeable Aqueous Zn Batteries. ACS Energy Letters, 2021, 6, 404-412.	17.4	148
4	Ionâ€Sieving Carbon Nanoshells for Deeply Rechargeable Znâ€Based Aqueous Batteries. Advanced Energy Materials, 2018, 8, 1802470.	19.5	139
5	Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes. Nano Energy, 2018, 53, 666-674.	16.0	112
6	A safe and fast-charging lithium-ion battery anode using MXene supported Li ₃ VO ₄ . Journal of Materials Chemistry A, 2019, 7, 11250-11256.	10.3	106
7	Deeply Rechargeable and Hydrogen-Evolution-Suppressing Zinc Anode in Alkaline Aqueous Electrolyte. Nano Letters, 2020, 20, 4700-4707.	9.1	89
8	Nanostructured Electrode Materials for High-Energy Rechargeable Li, Na and Zn Batteries. Chemistry of Materials, 2017, 29, 9589-9604.	6.7	80
9	Understanding and Controlling the Nucleation and Growth of Zn Electrodeposits for Aqueous Zinc-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 32930-32936.	8.0	71
10	A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries. Journal of Materials Chemistry A, 2018, 6, 21933-21940.	10.3	61
11	Jet fuel containing ligand-protecting energetic nanoparticles: A case study of boron in JP-10. Chemical Engineering Science, 2015, 129, 9-13.	3.8	58
12	Hybrid NiO/Co3O4 nanoflowers as high-performance anode materials for lithium-ion batteries. Chemical Engineering Journal, 2021, 420, 130469.	12.7	56
13	A Lasagna-Inspired Nanoscale ZnO Anode Design for High-Energy Rechargeable Aqueous Batteries. ACS Applied Energy Materials, 2018, 1, 6345-6351.	5.1	46
14	Inâ€Operando Visualization of the Electrochemical Formation of Liquid Polybromide Microdroplets. Angewandte Chemie - International Edition, 2019, 58, 15228-15234.	13.8	27
15	An effective and accessible cell configuration for testing rechargeable zinc-based alkaline batteries. Journal of Power Sources, 2021, 491, 229547.	7.8	18
16	Calcinationâ€Free Synthesis of Wellâ€Dispersed and Subâ€10â€nm Spinel Ferrite Nanoparticles as Highâ€Performance Anode Materials for Lithiumâ€Ion Batteries: A Case Study of CoFe ₂ O ₄ . Chemistry - A European Journal, 2021, 27, 12900-12909.	3.3	9
17	Rational design of walnut-like ZnO/Co ₃ O ₄ porous nanospheres with substantially enhanced lithium storage performance. Nanoscale, 2021, 14, 166-174.	5.6	6
18	Inâ€Operando Visualization of the Electrochemical Formation of Liquid Polybromide Microdroplets. Angewandte Chemie, 2019, 131, 15372-15378.	2.0	5

#	Article	IF	CITATIONS
19	Frontispiz: Inâ€Operando Visualization of the Electrochemical Formation of Liquid Polybromide Microdroplets. Angewandte Chemie, 2019, 131, .	2.0	O
20	Frontispiece: Inâ€Operando Visualization of the Electrochemical Formation of Liquid Polybromide Microdroplets. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0