
Richard G Fehon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9521829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Negative feedback couples Hippo pathway activation with Kibra degradation independent of Yorkie-mediated transcription. ELife, 2021, 10, .	6.0	5
2	Rho1 activation recapitulates early gastrulation events in the ventral, but not dorsal, epithelium of Drosophila embryos. ELife, 2020, 9, .	6.0	18
3	The CAF-1 complex couples Hippo pathway target gene expression and DNA replication. Molecular Biology of the Cell, 2019, 30, 2929-2942.	2.1	5
4	Live Imaging of Hippo Pathway Components in Drosophila Imaginal Discs. Methods in Molecular Biology, 2019, 1893, 53-59.	0.9	5
5	Yorkie Functions at the Cell Cortex to Promote Myosin Activation in a Non-transcriptional Manner. Developmental Cell, 2018, 46, 271-284.e5.	7.0	39
6	The palmitoyltransferase Approximated promotes growth via the Hippo pathway by palmitoylation of Fat. Journal of Cell Biology, 2017, 216, 265-277.	5.2	20
7	Size does matter!. Cell Cycle, 2017, 16, 907-908.	2.6	0
8	Kibra and Merlin Activate the Hippo Pathway Spatially Distinct from and Independent of Expanded. Developmental Cell, 2017, 40, 478-490.e3.	7.0	81
9	The novel SH3 domain protein Dlish/CG10933 mediates fat signaling in Drosophila by binding and regulating Dachs. ELife, 2016, 5, .	6.0	21
10	The transmembrane protein Crumbs displays complex dynamics during follicular morphogenesis and is regulated competitively by Moesin and aPKC. Development (Cambridge), 2015, 142, 1869-1878.	2.5	25
11	The transmembrane protein Crumbs displays complex dynamics during follicular morphogenesis and is regulated competitively by Moesin and aPKC. Journal of Cell Science, 2015, 128, e1007-e1007.	2.0	0
12	In Vivo Functional Analysis of the Human NF2 Tumor Suppressor Gene in Drosophila. PLoS ONE, 2014, 9, e90853.	2.5	6
13	Conundrum, an ARHGAP18 orthologue, regulates RhoA and proliferation through interactions with Moesin. Molecular Biology of the Cell, 2013, 24, 1420-1433.	2.1	40
14	An MBoC Favorite: Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Molecular Biology of the Cell, 2012, 23, 1607-1607.	2.1	0
15	Growth Control by Committee: Intercellular Junctions, Cell Polarity, and the Cytoskeleton Regulate Hippo Signaling. Developmental Cell, 2012, 22, 695-702.	7.0	123
16	Tao-1 Phosphorylates Hippo/MST Kinases to Regulate the Hippo-Salvador-Warts Tumor Suppressor Pathway. Developmental Cell, 2011, 21, 888-895.	7.0	203
17	Ezrin, Radixin and Moesin: key regulators of membrane–cortex interactions and signaling. Current Opinion in Cell Biology, 2011, 23, 377-382.	5.4	234
18	Organizing the cell cortex: the role of ERM proteins. Nature Reviews Molecular Cell Biology, 2010, 11, 276-287.	37.0	884

RICHARD G FEHON

#	Article	IF	CITATIONS
19	Rho1 regulates apoptosis via activation of the JNK signaling pathway at the plasma membrane. Journal of Cell Biology, 2010, 189, 311-323.	5.2	69
20	Merlin and the ERM proteins – regulators of receptor distribution and signaling at the cell cortex. Trends in Cell Biology, 2009, 19, 198-206.	7.9	179
21	FERMing Up the Plasma Membrane. Developmental Cell, 2008, 14, 154-156.	7.0	4
22	Self-masking in an Intact ERM-merlin Protein: An Active Role for the Central α-Helical Domain. Journal of Molecular Biology, 2007, 365, 1446-1459.	4.2	111
23	The Tumor Suppressors Merlin and Expanded Function Cooperatively to Modulate Receptor Endocytosis and Signaling. Current Biology, 2006, 16, 702-709.	3.9	187
24	Phosphorylation and activity of the tumor suppressor Merlin and the ERM protein Moesin are coordinately regulated by the Slik kinase. Journal of Cell Biology, 2006, 175, 305-313.	5.2	44
25	Protein interaction mapping: A Drosophila case study. Genome Research, 2005, 15, 376-384.	5.5	509
26	Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature, 2003, 421, 83-87.	27.8	233
27	ERM proteins and merlin: integrators at the cell cortex. Nature Reviews Molecular Cell Biology, 2002, 3, 586-599.	37.0	1,468
28	A Systematic Screen for Dominant Second-Site Modifiers of Merlin/NF2 Phenotypes Reveals an Interaction With blistered/DSRF and scribbler. Genetics, 2001, 158, 667-679.	2.9	23
29	The Protein 4.1, Ezrin, Radixin, Moesin (FERM) Domain of Drosophila Coracle, a Cytoplasmic Component of the Septate Junction, Provides Functions Essential for Embryonic Development and Imaginal Cell Proliferation. Genetics, 2001, 159, 219-228.	2.9	28
30	Structural Analysis of Drosophila Merlin Reveals Functional Domains Important for Growth Control and Subcellular Localization. Journal of Cell Biology, 1998, 141, 1589-1599.	5.2	137
31	Isolation of Mutations in the Drosophila Homologues of the Human <i>Neurofibromatosis 2</i> and Yeast <i>CDC42</i> Genes Using a Simple and Efficient Reverse-Genetic Method. Genetics, 1997, 146, 245-252.	2.9	79