
Paschalis Alexandridis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/952172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules, 1994, 27, 2414-2425.	2.2	1,716
2	Poly(ethylene oxide)î—,poly(propylene oxide)î—,poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96, 1-46.	2.3	1,656
3	A Record Nine Different Phases (Four Cubic, Two Hexagonal, and One Lamellar Lyotropic Liquid) Tj ETQq1 1 0.784 Copolymer and Selective Solvents (Water and Oil). Langmuir, 1998, 14, 2627-2638.	314 rgBT / 1.6	Overlock 1 497
4	Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nature Nanotechnology, 2014, 9, 631-638.	15.6	382
5	Formulation of Poloxamers for Drug Delivery. Journal of Functional Biomaterials, 2018, 9, 11.	1.8	373
6	Surface Activity of Poly(ethylene oxide)-block-Poly(propylene oxide)-block-Poly(ethylene oxide) Copolymers. Langmuir, 1994, 10, 2604-2612.	1.6	333
7	Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites. Nanomaterials, 2012, 2, 445-475.	1.9	328
8	Differential Scanning Calorimetry Investigation of the Effect of Salts on Aqueous Solution Properties of an Amphiphilic Block Copolymer (Poloxamer). Langmuir, 1997, 13, 6074-6082.	1.6	326
9	Temperature Effects on Structural Properties of Pluronic P104 and F108 PEO-PPO-PEO Block Copolymer Solutions. Langmuir, 1995, 11, 1468-1476.	1.6	309
10	Poly(ethylene oxide)/poly(propylene oxide) block copolymer surfactants. Current Opinion in Colloid and Interface Science, 1997, 2, 478-489.	3.4	306
11	Amphiphilic copolymers and their applications. Current Opinion in Colloid and Interface Science, 1996, 1, 490-501.	3.4	305
12	Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Advances in Colloid and Interface Science, 2020, 275, 102061.	7.0	294
13	Nanoparticles in ionic liquids: interactions and organization. Physical Chemistry Chemical Physics, 2015, 17, 18238-18261.	1.3	292
14	Mechanism of Gold Metal Ion Reduction, Nanoparticle Growth and Size Control in Aqueous Amphiphilic Block Copolymer Solutions at Ambient Conditions. Journal of Physical Chemistry B, 2005, 109, 7766-7777.	1.2	288
15	Single-Step Synthesis and Stabilization of Metal Nanoparticles in Aqueous Pluronic Block Copolymer Solutions at Ambient Temperature. Langmuir, 2004, 20, 8426-8430.	1.6	274
16	Lyotropic Liquid Crystallinity in Amphiphilic Block Copolymers:  Temperature Effects on Phase Behavior and Structure for Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) Copolymers of Different Composition. Langmuir, 1996, 12, 2690-2700.	1.6	256
17	Modification of the Microstructure in Block Copolymerâ^'Waterâ^'"Oil―Systems by Varying the Copolymer Composition and the "Oil―Type:Á Small-Angle X-ray Scattering and Deuterium-NMR Investigation. Journal of Physical Chemistry B, 1998, 102, 1149-1158.	1.2	241
18	Physicochemical aspects of drug delivery and release from polymer-based colloids. Current Opinion in Colloid and Interface Science, 2000, 5, 132-143.	3.4	206

#	Article	IF	CITATIONS
19	Self-Assembly of Amphiphilic Block Copolymers: The (EO)13(PO)30(EO)13-Water-p-Xylene System. Macromolecules, 1995, 28, 7700-7710.	2.2	202
20	Block copolymer–nanoparticle composites: Structure, functional properties, and processing. Progress in Polymer Science, 2015, 40, 33-62.	11.8	201
21	Small-Angle Neutron Scattering Investigation of the Temperature-Dependent Aggregation Behavior of the Block Copolymer Pluronic L64 in Aqueous Solutionâ€. Langmuir, 2000, 16, 8555-8561.	1.6	195
22	3D direct writing fabrication of electrodes for electrochemical storage devices. Journal of Power Sources, 2017, 354, 134-147.	4.0	164
23	Solvent-regulated ordering in block copolymers. Current Opinion in Colloid and Interface Science, 1999, 4, 130-139.	3.4	160
24	Fluorescence Probe Studies of Pluronic Copolymer Solutions as a Function of Temperature. Langmuir, 1995, 11, 730-737.	1.6	156
25	SANS Investigation of Polyether Block Copolymer Micelle Structure in Mixed Solvents of Water and Formamide, Ethanol, or Glycerol. Macromolecules, 2000, 33, 5574-5587.	2.2	149
26	Pluronic-P105 PEO-PPO-PEO Block Copolymer in Aqueous Urea Solutions: Micelle Formation, Structure, and Microenvironment. Langmuir, 1995, 11, 2442-2450.	1.6	148
27	Ionic liquid and nanoparticle hybrid systems: Emerging applications. Advances in Colloid and Interface Science, 2017, 244, 54-70.	7.0	148
28	Temperature-Dependent Adsorption of Pluronic F127 Block Copolymers onto Carbon Black Particles Dispersed in Aqueous Media. Journal of Physical Chemistry B, 2002, 106, 10834-10844.	1.2	147
29	Thermodynamics of Droplet Clustering in Percolating AOT Water-in-Oil Microemulsions. The Journal of Physical Chemistry, 1995, 99, 8222-8232.	2.9	145
30	Structural Polymorphism of Amphiphilic Copolymers:Â Six Lyotropic Liquid Crystalline and Two Solution Phases in a Poly(oxybutylene)-b-poly(oxyethylene)â^'Waterâ^'Xylene System. Langmuir, 1997, 13, 23-34.	1.6	139
31	Modification of the Microstructure in Poloxamer Block Copolymerâ^'Waterâ^'"Oil―Systems by Varying the "Oil―Type. Macromolecules, 1997, 30, 6788-6797.	2.2	130
32	Evolution in Structural Polymorphism of Pluronic F127 Poly(ethylene oxide)â^Poly(propylene oxide) Block Copolymer in Ternary Systems with Water and Pharmaceutically Acceptable Organic Solvents:Â From "Glycols―to "Oilsâ€â€. Langmuir, 2000, 16, 9058-9069.	1.6	121
33	Effect of Glycols on the Self-Assembly of Amphiphilic Block Copolymers in Water. 1. Phase Diagrams and Structure Identification. Langmuir, 2000, 16, 3660-3675.	1.6	118
34	Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opinion on Drug Delivery, 2018, 15, 1085-1104.	2.4	117
35	Block copolymer-directed metal nanoparticle morphogenesis and organization. European Polymer Journal, 2011, 47, 569-583.	2.6	114
36	Dynamics of Micro- and Macrophase Separation of Amphiphilic Block-Copolymers in Aqueous Solution. Macromolecules, 1999, 32, 5539-5551.	2.2	113

#	Article	IF	CITATIONS
37	Phase Behavior and Microstructure in Binary Block Copolymer/Selective Solvent Systems:Â Experiments and Theory. Macromolecules, 1999, 32, 637-645.	2.2	107
38	Phase Behavior of Amphiphilic Block Copolymers in Waterâ^'Oil Mixtures:Â The Pluronic 25R4â^'Waterâ^'p-Xylene System. The Journal of Physical Chemistry, 1996, 100, 280-288.	2.9	103
39	Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties. Polymers, 2016, 8, 387.	2.0	102
40	Size- and shape-controlled synthesis of colloidal gold through autoreduction of the auric cation by poly(ethylene oxide)–poly(propylene oxide) block copolymers in aqueous solutions at ambient conditions. Nanotechnology, 2005, 16, S344-S353.	1.3	97
41	Effect of Glycols on the Self-Assembly of Amphiphilic Block Copolymers in Water. 2. Glycol Location in the Microstructure. Langmuir, 2000, 16, 3676-3689.	1.6	94
42	Effect of Pharmaceutically Acceptable Glycols on the Stability of the Liquid Crystalline Gels Formed by Poloxamer 407 in Water. Journal of Colloid and Interface Science, 2002, 252, 226-235.	5.0	94
43	Structural Polymorphism of Poly(ethylene oxide)â`'Poly(propylene oxide) Block Copolymers in Nonaqueous Polar Solvents. Macromolecules, 1998, 31, 6935-6942.	2.2	92
44	Phase Behavior and Structure of Ternary Amphiphilic Block Copolymerâ^'Alkanolâ^'Water Systems: Comparison of Poly(ethylene oxide)/Poly(propylene oxide) to Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	50 45 7 Td	(ox9de)/Poly(t
45	Rheological Properties of Oppositely Charged Polyelectrolyteâ^'Surfactant Mixtures:  Effect of Polymer Molecular Weight and Surfactant Architecture. Macromolecules, 2001, 34, 5005-5018.	2.2	91
46	Spontaneous Formation of Gold Nanoparticles in Poly(ethylene oxide)â^'Poly(propylene oxide) Solutions:  Solvent Quality and Polymer Structure Effects. Langmuir, 2005, 21, 8019-8025.	1.6	89
47	Reverse Micelle Formation and Water Solubilization by Polyoxyalkylene Block Copolymers in Organic Solvent. Journal of Physical Chemistry B, 1997, 101, 8103-8111.	1.2	82
48	Self-Assembly of a Poly(ethylene oxide)/Poly(propylene oxide) Block Copolymer (Pluronic P104,) Tj ETQq0 0 0 rg 7541-7548.	BT /Overlo 1.2	ock 10 Tf 50 3 82
49	Synthesis and Size Control of Luminescent ZnSe Nanocrystals by a Microemulsionâ das Contacting Technique. Langmuir, 2004, 20, 550-553.	1.6	82
50	Ag and Au Monometallic and Bimetallic Colloids:  Morphogenesis in Amphiphilic Block Copolymer Solutions. Chemistry of Materials, 2006, 18, 2577-2583.	3.2	81
51	Assessment of solvents for cellulose dissolution. Bioresource Technology, 2017, 228, 330-338.	4.8	75
52	Modification of the lyotropic liquid crystalline microstructure of amphiphilic block copolymers in the presence of cosolvents. Advances in Colloid and Interface Science, 2001, 89-90, 351-382.	7.0	73
53	Effect of Solvent Quality on Reverse Micelle Formation and Water Solubilization by Poly(ethylene) Tj ETQq1 1 0. Xylene. Journal of Colloid and Interface Science, 1997, 194, 166-173.	784314 rg 5.0	gBT /Overlock 72
54	Shear induced structures in lamellar phases of amphiphilic block copolymers. Physical Chemistry Chemical Physics, 1999, 1, 3905-3910.	1.3	72

PASCHALIS ALEXANDRIDIS

#	Article	IF	CITATIONS
55	A SANS Investigation of Reverse (Water-in-Oil) Micelles of Amphiphilic Block Copolymers. Macromolecules, 1999, 32, 6725-6733.	2.2	72
56	Cellulose triacetate doped with ionic liquids for membrane gas separation. Polymer, 2016, 89, 1-11.	1.8	72
57	Cosolvent Effects on the Micellization of an Amphiphilic Siloxane Graft Copolymer in Aqueous Solutions. Langmuir, 2002, 18, 4220-4231.	1.6	71
58	Micellization of Polyoxyalkylene Block Copolymers in Formamide. Macromolecules, 2000, 33, 3382-3391.	2.2	68
59	Therapeutic surfactant-stripped frozen micelles. Nature Communications, 2016, 7, 11649.	5.8	68
60	Self-Assembly of Block Copolymers in Selective Solvents:Â Influence of Relative Block Size on Phase Behavior. Langmuir, 2000, 16, 6839-6846.	1.6	66
61	Adsorption of a Polymeric Siloxane Surfactant on Carbon Black Particles Dispersed in Mixtures of Water with Polar Organic Solvents. Journal of Colloid and Interface Science, 2002, 255, 1-9.	5.0	66
62	A Reverse Micellar Cubic Phase. Langmuir, 1996, 12, 1419-1422.	1.6	65
63	Utilizing temperature-sensitive association of Pluronic F-127 with lipid bilayers to control liposome–cell adhesion. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1559, 32-42.	1.4	65
64	Templated synthesis of ZnSe nanostructures using lyotropic liquid crystals. Nanotechnology, 2005, 16, 2372-2380.	1.3	65
65	Polymer conformation in mixed aqueous-polar organic solvents. European Polymer Journal, 2010, 46, 324-335.	2.6	65
66	Shear Orientation of a Hexagonal Lyotropic Triblock Copolymer Phase As Probed by Flow Birefringence and Small-Angle Light and Neutron Scattering. Macromolecules, 1998, 31, 2293-2298.	2.2	64
67	Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid-liquid interfaces: Fundamentals and applications. Advances in Colloid and Interface Science, 2017, 244, 132-163.	7.0	63
68	Xanthan gum in aqueous solutions: Fundamentals and applications. International Journal of Biological Macromolecules, 2022, 216, 583-604.	3.6	62
69	Polyoxyalkylene Block Copolymers in Formamideâ^'Water Mixed Solvents:Â Micelle Formation and Structure Studied by Small-Angle Neutron Scattering. Langmuir, 2000, 16, 4819-4829.	1.6	58
70	Micellization of amphiphilic block copolymers in binary and ternary solvent mixtures. Journal of Colloid and Interface Science, 2013, 390, 137-146.	5.0	58
71	Structure and dynamics of dextran in binary mixtures of a good and a bad solvent. Colloid and Polymer Science, 2010, 288, 1301-1312.	1.0	56
72	Solvent effects on polysaccharide conformation. Carbohydrate Polymers, 2010, 79, 380-390.	5.1	56

#	Article	IF	CITATIONS
73	Control of the Rheological Properties in Solutions of a Polyelectrolyte and an Oppositely Charged Surfactant by the Addition of Cyclodextrins. Langmuir, 1999, 15, 8105-8112.	1.6	53
74	Micellization of Alkyl-Propoxy-Ethoxylate Surfactants in Waterâ^'Polar Organic Solvent Mixtures. Langmuir, 2010, 26, 10532-10540.	1.6	53
75	Self-Assembly in a Mixture of Two Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) Copolymers in Water. Journal of Colloid and Interface Science, 1996, 183, 339-350.	5.0	51
76	Micellization Thermodynamics of Pluronic P123 (EO20PO70EO20) Amphiphilic Block Copolymer in Aqueous Ethylammonium Nitrate (EAN) Solutions. Polymers, 2018, 10, 32.	2.0	50
77	Synthesis and Application of Fluorescein-Labeled Pluronic Block Copolymers to the Study of Polymerâ ^{-,} Surface Interactions. Langmuir, 2001, 17, 537-546.	1.6	49
78	Adsorption of Pluronic block copolymers on silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 422, 155-164.	2.3	49
79	Adsorption of a Rake-Type Siloxane Surfactant onto Carbon Black Nanoparticles Dispersed in Aqueous Media. Langmuir, 2002, 18, 6147-6158.	1.6	48
80	Cellulose dissolution: insights on the contributions of solvent-induced decrystallization and chain disentanglement. Cellulose, 2017, 24, 571-590.	2.4	48
81	Advances in self-ordering macromolecules and nanostructure design. Current Opinion in Colloid and Interface Science, 1999, 4, 140-146.	3.4	46
82	Influence of Shear on Solvated Amphiphilic Block Copolymers with Lamellar Morphology. Macromolecules, 2002, 35, 4064-4074.	2.2	46
83	Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates. Nanotechnology, 2006, 17, 3121-3128.	1.3	45
84	Fluorinated Surfactant Adsorption on Mineral Surfaces: Implications for PFAS Fate and Transport in the Environment. Surfaces, 2020, 3, 516-566.	1.0	45
85	Association between Nonionic Amphiphilic Polymer and Ionic Surfactant in Aqueous Solutions: Effect of Polymer Hydrophobicity and Micellization. Polymers, 2020, 12, 1831.	2.0	43
86	Assessment of Performance and Challenges in Use of Commercial Automated Sorting Technology for Plastic Waste. Recycling, 2022, 7, 11.	2.3	40
87	Modeling of the Phase Behavior in Ternary Triblock Copolymer/Water/Oil Systems. Macromolecules, 1999, 32, 5435-5443.	2.2	36
88	Self-Assembled Block Copolymer–Nanoparticle Hybrids: Interplay between Enthalpy and Entropy. Langmuir, 2012, 28, 15975-15986.	1.6	36
89	Ionic Liquid-Modified Porous Materials for Gas Separation and Heterogeneous Catalysis. Journal of Physical Chemistry C, 2012, 116, 16398-16411.	1.5	35
90	Dissolution of Cellulosic Fibers: Impact of Crystallinity and Fiber Diameter. Biomacromolecules, 2018, 19, 640-651.	2.6	35

6

#	Article	IF	CITATIONS
91	Poly(ethylene oxide)-containing amphiphilic block copolymers in ternary mixtures with water and organic solvent: effect of copolymer and solvent type on phase behavior and structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 129-130, 3-21.	2.3	34
92	Small-Angle Neutron Scattering Characterization of Micelles Formed by Poly(dimethylsiloxane)-graft-polyether Copolymers in Mixed Polar Solvents. Journal of Physical Chemistry B, 2002, 106, 12124-12132.	1.2	32
93	Drying of Films Formed by Ordered Poly(ethylene oxide)â^'Poly(propylene oxide) Block Copolymer Gels. Langmuir, 2005, 21, 1806-1817.	1.6	31
94	Solvent processing of cellulose for effective bioresource utilization. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 40-52.	3.2	31
95	Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. Polymer Reviews, 2023, 63, 67-126.	5.3	31
96	A correlation for the estimation of critical micellization concentrations and temperatures of polyols in aqueous solutions. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 823-826.	0.8	30
97	The Ability of Poloxamers to Inhibit Platelet Aggregation Depends on their Physicochemical Properties. Thrombosis and Haemostasis, 2001, 86, 1532-1539.	1.8	30
98	Effect of surfactant phase behavior on emulsification. Journal of Colloid and Interface Science, 2016, 466, 138-149.	5.0	30
99	Micellization of polyoxyethylene–polyoxypropylene block copolymers in aqueous polyol solutions. Journal of Molecular Liquids, 2015, 210, 20-28.	2.3	29
100	Osmotic Stress Measurements of Intermolecular Forces in Ordered Assemblies Formed by Solvated Block Copolymers. Macromolecules, 2004, 37, 912-924.	2.2	27
101	Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13389-13399.	5.2	27
102	Lyotropic Liquid Crystalline Structures Formed by Amphiphilic Heteroarm Star Copolymers. Macromolecules, 2001, 34, 5979-5983.	2.2	26
103	Block copolymer-mediated synthesis of gold nanoparticles in aqueous solutions: Segment effect on gold ion reduction, stabilization, and particle morphology. Journal of Colloid and Interface Science, 2013, 394, 124-131.	5.0	26
104	Comparison of ionic liquid and salt effects on the thermodynamics of amphiphile micellization in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 159-168.	2.3	25
105	Nanoparticle surface modification by amphiphilic polymers in aqueous media: Role of polar organic solvents. Journal of Colloid and Interface Science, 2013, 397, 1-8.	5.0	24
106	Controlling the self-assembly of perfluorinated surfactants in aqueous environments. Physical Chemistry Chemical Physics, 2021, 23, 10029-10039.	1.3	24
107	Sequestration of per- and polyfluoroalkyl substances (PFAS) by adsorption: Surfactant and surface aspects. Current Opinion in Colloid and Interface Science, 2022, 58, 101571.	3.4	22
108	Glucose-induced sphere to ellipsoid transition of polyoxyethylene–polyoxypropylene block copolymer micelles in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 203-213.	2.3	21

#	Article	IF	CITATIONS
109	Adsorption Mechanism of Perfluorooctanoate on Cyclodextrin-Based Polymers: Probing the Synergy of Electrostatic and Hydrophobic Interactions with Molecular Dynamics Simulations. , 2022, 4, 853-859.		21
110	Perfluorooctanoate in Aqueous Urea Solutions: Micelle Formation, Structure, and Microenvironment. International Journal of Molecular Sciences, 2019, 20, 5761.	1.8	20
111	Alkyl Propoxy Ethoxylate "Graded―Surfactants: Micelle Formation and Structure in Aqueous Solutions. Journal of Physical Chemistry B, 2010, 114, 4485-4494.	1.2	19
112	Selfâ€Assembly of Amphiphilic Block Copolymers in Ternary Solvent Mixtures: Lyotropic Liquid Crystalline Phase Behavior and Structure. Macromolecular Chemistry and Physics, 2012, 213, 2514-2528.	1.1	17
113	Tablet Scoring: Current Practice, Fundamentals, and Knowledge Gaps. Applied Sciences (Switzerland), 2019, 9, 3066.	1.3	17
114	Facile aqueous synthesis and stabilization of nearly monodispersed gold nanospheres by poly(<scp>L</scp> â€proline). Journal of Polymer Science Part A, 2013, 51, 1448-1456.	2.5	16
115	Block copolymer-mediated synthesis of silver nanoparticles from silver ions in aqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 84-91.	2.3	16
116	Cluster and Network Formation toward Percolation in the Microemulsion L2Phase Formed by an Amphiphilic Triblock Copolymer and Water inp-Xylene. Langmuir, 1998, 14, 723-725.	1.6	15
117	Facile preparation of Ag–Au bimetallic nanonetworks. Materials Letters, 2006, 60, 1983-1986.	1.3	15
118	Informing the Public and Educating Students on Plastic Recycling. Recycling, 2021, 6, 69.	2.3	15
119	Structure and composition of mixed micelles formed by nonionic block copolymers and ionic surfactants in water determined by small-angle neutron scattering with contrast variation. Journal of Colloid and Interface Science, 2022, 609, 456-468.	5.0	14
120	Controlled Release from Ordered Microstructures Formed by Poloxamer Block Copolymers. ACS Symposium Series, 2000, , 364-374.	0.5	13
121	High‥ield Synthesis of Gold Microplates Using Amphiphilic Block Copolymers: Are Lyotropic Liquid Crystals Required?. Macromolecular Symposia, 2010, 289, 18-24.	0.4	13
122	Structure and Interactions in Perfluorooctanoate Micellar Solutions Revealed by Small-Angle Neutron Scattering and Molecular Dynamics Simulations Studies: Effect of Urea. Langmuir, 2021, 37, 5339-5347.	1.6	13
123	GenX in water: Interactions and self-assembly. Journal of Hazardous Materials, 2022, 428, 128137.	6.5	13
124	Polyhedral Oligosilsesquioxane (POSS) Nanoparticle Localization in Ordered Structures Formed by Solvated Block Copolymers. Macromolecular Chemistry and Physics, 2013, 214, 2716-2724.	1.1	10
125	Economic feasibility of plastic waste conversion to fuel using pyrolysis. Sustainable Chemistry and Pharmacy, 2022, 27, 100683.	1.6	10
126	Role of chain length and electrolyte on the micellization of anionic fluorinated surfactants in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127313.	2.3	9

#	Article	IF	CITATIONS
127	Self-assembly of sodium bis(2-ethylhexyl) sulfosuccinate in aqueous solutions: Modulation of micelle structure and interactions by cyclodextrins investigated by small-angle neutron scattering. Journal of Molecular Liquids, 2015, 210, 125-135.	2.3	7
128	Mono- and Di-valent Salts as Modifiers of PEO-PPO-PEO Block Copolymer Interactions with Silica Nanoparticles in Aqueous Dispersions. Journal of Dispersion Science and Technology, 2015, 36, 1806-1815.	1.3	7
129	Competitive Adsorption Between PEO-Containing Block Copolymers and Homopolymers at Silica. Journal of Dispersion Science and Technology, 2015, 36, 1-9.	1.3	7
130	Small-Angle Scattering Characterization of Block Copolymer Micelles and Lyotropic Liquid Crystals. ACS Symposium Series, 2003, , 60-80.	0.5	6
131	Sorption and Transport of Water Vapor in Amphiphilic Block Copolymer Films. Journal of Dispersion Science and Technology, 2005, 25, 619-629.	1.3	6
132	Polymeric surfactant micelle structure modulated by ionic liquids. Journal of Molecular Liquids, 2022, 346, 118195.	2.3	6
133	Conversion of particle size distribution data from mass to number-based and its application to biomass processing. Biosystems Engineering, 2018, 176, 73-87.	1.9	5
134	Binding of Perfluorooctanoate to Poly(ethylene oxide). Macromolecules, 2022, 55, 4624-4636.	2.2	5
135	Controlled Synthesis of Zinc Selenide Nanostructures using Oil-Water-Amphiphilic Block Copolymer Liquid Crystals. Materials Research Society Symposia Proceedings, 2006, 942, 1.	0.1	3
136	Population ensemble modeling of biomass dissolution. Chemical Engineering Journal, 2018, 350, 37-48.	6.6	3
137	Interactions between Cyclodextrins and a Mixed Cationic Cellulose Ether: Anionic Surfactant Gelling System. ACS Symposium Series, 1999, , 187-198.	0.5	1
138	Association of Siloxane Polymeric Surfactants in Aqueous Solution. ACS Symposium Series, 2003, , 222-234.	0.5	1
139	Selfâ€Assembly of Polyethylene Glycol Ether Surfactants in Aqueous Solutions: The Effect of Linker between Alkyl and Ethoxylate. Journal of Surfactants and Detergents, 2019, 22, 1147-1161.	1.0	1
140	Interfacial Dynamics of Water-in-Oil Dropliets: a Temperature-Jump Investigation. Materials Research Society Symposia Proceedings, 1992, 290, 299.	0.1	0
141	Synthesis and Size Control of Luminescent II-VI Semiconductor Nanocrystals by a Novel Microemulsion-Gas Contacting Technique. Materials Research Society Symposia Proceedings, 2003, 789,	0.1	0
142	Product Design Applied to Formulated Products. International Journal of Quality Assurance in Engineering and Technology Education, 2015, 4, 21-43.	0.1	0
143	Frozen naphthalocyanine micelles for intestinal imaging. , 2015, , .		0
144	Eli Ruckenstein – A Rare Researcher, Teacher, and Mentor par Excellence. Advances in Colloid and Interface Science, 2017, 244, 1-5.	7.0	0

#	Article	IF	CITATIONS
145	Tailoring Performance of Polymer Electrolytes Through Formulation Design. Engineering Materials and Processes, 2017, , 481-510.	0.2	0