
Marina S Leite

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9521607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning. Journal of Physical Chemistry Letters, 2022, 13, 2254-2263.	4.6	13
2	Efficient hot-carrier dynamics in near-infrared photocatalytic metals. Physical Review B, 2022, 105, .	3.2	5
3	A dataquake for solar cells. Nature Energy, 2022, 7, 5-6.	39.5	0
4	Transient Structural Colors with Magnesiumâ€Based Reflective Filters. Advanced Optical Materials, 2022, 10, .	7.3	2
5	Selective etching properties of Mg thin films and micro/nanostructures for dynamic photonics [Invited]. Optical Materials Express, 2021, 11, 1555.	3.0	2
6	Waterâ€Induced and Wavelengthâ€Dependent Light Absorption and Emission Dynamics in Tripleâ€Cation Halide Perovskites. Advanced Optical Materials, 2021, 9, 2100710.	7.3	0
7	Dynamic Photonics with Unconventional Materials. , 2021, , .		0
8	Machine Learning Roadmap for Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 7866-7877.	4.6	51
9	Photophysical Processes in Metal Halide Perovskites. Advanced Optical Materials, 2021, 9, 2101738.	7.3	1
10	Imaging Metal Halide Perovskites Material and Properties at the Nanoscale. Advanced Energy Materials, 2020, 10, 1903161.	19.5	21
11	Emergent Opportunities with Metallic Alloys: From Material Design to Optical Devices. Advanced Optical Materials, 2020, 8, 2001082.	7.3	10
12	Energy Spotlight. ACS Energy Letters, 2020, 5, 3876-3878.	17.4	2
13	Metallic Alloys: Emergent Opportunities with Metallic Alloys: From Material Design to Optical Devices (Advanced Optical Materials 23/2020). Advanced Optical Materials, 2020, 8, 2070091.	7.3	1
14	Enhanced near-Infrared Photoresponse from Nanoscale Ag-Au Alloyed Films. ACS Photonics, 2020, 7, 1689-1698.	6.6	14
15	Energy Spotlight. ACS Energy Letters, 2020, 5, 1328-1329.	17.4	5
16	Correlated Electrical and Chemical Nanoscale Properties in Potassiumâ€Passivated, Triple ation Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000515.	3.7	4
17	Energy Spotlight. ACS Energy Letters, 2020, 5, 2454-2455.	17.4	0
18	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	39.5	797

#	Article	IF	CITATIONS
19	Control of hot-carrier relaxation time in Au-Ag thin films through alloying. Optics Express, 2020, 28, 33528.	3.4	3
20	Alloying: A Platform for Metallic Materials with On-Demand Optical Response. Accounts of Chemical Research, 2019, 52, 2881-2891.	15.6	38
21	The Effects of Incident Photon Energy on the Time-Dependent Voltage Response of Lead Halide Perovskites. Chemistry of Materials, 2019, 31, 8969-8976.	6.7	10
22	Structure–Property-Performance Relationship of Ultrathin Pd–Au Alloy Catalyst Layers for Low-Temperature Ethanol Oxidation in Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 24919-24932.	8.0	27
23	Structural Anisotropy in Stretchable Silicon. Advanced Electronic Materials, 2019, 5, 1900003.	5.1	1
24	In Situ Optical and Stress Characterization of Alloyed Pd _{<i>x</i>} Au _{1–<i>x</i>} Hydrides. ACS Applied Materials & Interfaces, 2019, 11, 45057-45067.	8.0	17
25	Optical Response of Nanostructures: From Pure to Alloyed Metals. , 2019, , 87-103.		2
26	Cesium-Incorporated Triple Cation Perovskites Deliver Fully Reversible and Stable Nanoscale Voltage Response. ACS Nano, 2019, 13, 1538-1546.	14.6	21
27	Magnesium for Transient Photonics. ACS Photonics, 2019, 6, 272-278.	6.6	18
28	Machine Learning for Perovskites' Reap-Rest-Recovery Cycle. Joule, 2019, 3, 325-337.	24.0	62
29	From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology Revealed via <i>in Situ</i> Scanning Electron Microscopy. Nano Letters, 2018, 18, 1644-1650.	9.1	47
30	Metal Alloys for Superabsorption: Lithographyâ€Free, Omnidirectional, CMOSâ€Compatible AlCu Alloys for Thinâ€Film Superabsorbers (Advanced Optical Materials 2/2018). Advanced Optical Materials, 2018, 6, 1870007.	7.3	1
31	Active Control of Photon Recycling for Tunable Optoelectronic Materials. Advanced Optical Materials, 2018, 6, 1701323.	7.3	6
32	Lithographyâ€Free, Omnidirectional, CMOSâ€Compatible AlCu Alloys for Thinâ€Film Superabsorbers. Advanced Optical Materials, 2018, 6, 1700830.	7.3	34
33	Near-IR Imaging Based on Hot Carrier Generation in Nanometer-Scale Optical Coatings. ACS Photonics, 2018, 5, 306-311.	6.6	29
34	New Microscopic Methods for the Functional Imaging of Energy Materials at the Nanoscale. Microscopy and Microanalysis, 2018, 24, 1950-1951.	0.4	0
35	Band Structure Engineering by Alloying for Photonics. Advanced Optical Materials, 2018, 6, 1800218.	7.3	21
36	Multiscale Functional Imaging of Interfaces through Atomic Force Microscopy Using Harmonic Mixing. ACS Applied Materials & Interfaces, 2018, 10, 28850-28859.	8.0	13

#	Article	IF	CITATIONS
37	Humidity-Induced Photoluminescence Hysteresis in Variable Cs/Br Ratio Hybrid Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 3463-3469.	4.6	50
38	Emerging Materials for Photonics. , 2018, , .		0
39	Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells. Nano Letters, 2017, 17, 2554-2560.	9.1	111
40	Encapsulated Object Analysis: Imaging and Analysis of Encapsulated Objects through Selfâ€Assembled Electron and Optically Transparent Graphene Oxide Membranes (Adv. Mater. Interfaces 2/2017). Advanced Materials Interfaces, 2017, 4, .	3.7	0
41	Imaging and Analysis of Encapsulated Objects through Selfâ€Assembled Electron and Optically Transparent Graphene Oxide Membranes. Advanced Materials Interfaces, 2017, 4, 1600734.	3.7	8
42	Imaging Energy Harvesting and Storage Systems at the Nanoscale. ACS Energy Letters, 2017, 2, 2761-2777.	17.4	39
43	Mesoscale Functional Imaging of Materials for Photovoltaics. ACS Energy Letters, 2017, 2, 1825-1834.	17.4	33
44	Nearâ€Field Optical Properties of Fully Alloyed Noble Metal Nanoparticles. Advanced Optical Materials, 2017, 5, 1600568.	7.3	44
45	Resonant and non-resonant dielectric coatings for high efficiency solar cells. , 2017, , .		0
46	Nano-Imaging of Performance in Photovoltaics. , 2017, , .		0
47	Imaging the Effect of CdSe Window Layers in CdTe Photovoltaics. , 2017, , .		0
48	Mapping V <inf>oc</inf> in polycrystalline solar cells with nanoscale spatial resolution. , 2016, , .		0
49	Photovoltage Tomography in Polycrystalline Solar Cells. ACS Energy Letters, 2016, 1, 899-905.	17.4	12
50	Demonstration of Resonance Coupling in Scalable Dielectric Microresonator Coatings for Photovoltaics. ACS Applied Materials & amp; Interfaces, 2016, 8, 24536-24542.	8.0	23
51	Toward clean suspended CVD graphene. RSC Advances, 2016, 6, 83954-83962.	3.6	22
52	Li Diffusion in All-Solid-State Batteries Imaged Through Optical and Electron Transparent Electrodes. Microscopy and Microanalysis, 2016, 22, 1352-1353.	0.4	0
53	Noble Metal Alloys for Plasmonics. ACS Photonics, 2016, 3, 507-513.	6.6	140
54	Nanoimaging of Openâ€Circuit Voltage in Photovoltaic Devices. Advanced Energy Materials, 2015, 5, 1501142.	19.5	79

#	Article	IF	CITATIONS
55	Imaging EQE in CIGS solar cells with high spatial resolution. , 2015, , .		1
56	Surface/Interface Effects on High-Performance Thin-Film All-Solid-State Li-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 26007-26011.	8.0	26
57	Nanoscale Imaging of Photocurrent and Efficiency in CdTe Solar Cells. ACS Nano, 2014, 8, 11883-11890.	14.6	60
58	Insights into capacity loss mechanisms of all-solid-state Li-ion batteries with Al anodes. Journal of Materials Chemistry A, 2014, 2, 20552-20559.	10.3	39
59	Mapping the Local Photoelectronic Properties of Polycrystalline Solar Cells Through High Resolution Laser-Beam-Induced Current Microscopy. IEEE Journal of Photovoltaics, 2014, 4, 311-316.	2.5	26
60	Assessing local voltage in CIGS solar cells by nanoscale resolved Kelvin Probe Force Microscopy and sub-micron photoluminescence. , 2014, , .		2
61	Local electrical characterization of cadmium telluride solar cells using low-energy electron beam. Solar Energy Materials and Solar Cells, 2013, 117, 499-504.	6.2	37
62	Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%. Applied Physics Letters, 2013, 102, .	3.3	91
63	Device modeling of an optimized monolithic all lattice-matched 3-junction solar cell with efficiency > 50%. , 2012, , .		1
64	High-resolution local current measurement of CdTe solar cells. , 2012, , .		4
65	Intermixing during Ripening in Ge–Si Incoherent Epitaxial Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 901-907.	3.1	5
66	Photovoltaic efficiencies in lattice-matched III-V multijunction solar cells with unconventional lattice parameters. , 2011, , .		4
67	InAlAs epitaxial growth for wide band gap solar cells. , 2011, , .		5
68	Waferâ€ S cale Strain Engineering of Ultrathin Semiconductor Crystalline Layers. Advanced Materials, 2011, 23, 3801-3807.	21.0	14
69	Wide-band-gap InAlAs solar cell for an alternative multijunction approach. Applied Physics Letters, 2011, 98, 093502.	3.3	31
70	Increased cell efficiency in InGaAs thin film solar cells with dielectric and metal back reflectors. , 2009, , .		2
71	Control of Ge/Si intermixing during Ge island growth. Applied Physics Letters, 2009, 94, .	3.3	12
72	Revealing Quantitative 3D Chemical Arrangement on Geâ^'Si Nanostructures. Journal of Physical Chemistry C, 2009, 113, 9018-9022.	3.1	18

#	Article	IF	CITATIONS
73	Evolution of Thermodynamic Potentials in Closed and Open Nanocrystalline Systems: Ge-Si:Si(001) Islands. Physical Review Letters, 2008, 100, 226101.	7.8	42
74	Reactive epitaxy of metallic hafnium silicide nanocrystals. Applied Physics Letters, 2008, 93, 013107.	3.3	2
75	Alloying Mechanisms for Epitaxial Nanocrystals. Physical Review Letters, 2007, 98, 165901.	7.8	36
76	X-ray diffraction mapping of strain fields and chemical composition of SiGe:Si(001) quantum dot molecules. Physical Review B, 2006, 73, .	3.2	12
77	Structural effects on Au and Ag colloidal nanoparticles. , 2004, , 131-134.		0
78	Mapping the performance of solar cells with nanoscale resolution. SPIE Newsroom, 0, , .	0.1	1
79	Achieving Scalable Nearâ€Zeroâ€Index Materials. Advanced Photonics Research, 0, , 2200109.	3.6	2