Farid Akhtar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9521515/publications.pdf

Version: 2024-02-01

159585 3,643 123 30 citations h-index papers

g-index 125 125 125 3678 docs citations times ranked citing authors all docs

161849

54

#	Article	IF	Citations
1	Ab initio aided design of novel quaternary, quinary and senary high-entropy borocarbides. Journal of Materials Science, 2022, 57, 422-443.	3.7	4
2	Bibliometric Mapping of Literature on High-Entropy/Multicomponent Alloys and Systematic Review of Emerging Applications. Entropy, 2022, 24, 329.	2.2	8
3	Fabrication of MoSi2 coatings on molybdenum and its high-temperature anti-oxidation properties. Transactions of Nonferrous Metals Society of China, 2022, 32, 935-946.	4.2	11
4	Enhanced Mechanical, Thermal and Electrical Properties of Highâ€Entropy HfMoNbTaTiVWZr Thin Film Metallic Glass and its Nitrides. Advanced Engineering Materials, 2022, 24, .	3.5	16
5	Tribological performance of Ti6Al4V at elevated temperatures fabricated by electron beam powder bed fusion. Tribology International, 2021, 153, 106658.	5.9	14
6	Porous Ceramics for Energy Applications. , 2021, , 380-392.		0
7	Preparation and highâ€temperature oxidation resistance of multilayer MoSi ₂ /MoB coating by spent MoSi ₂ â€based materials. Journal of the American Ceramic Society, 2021, 104, 3682-3694.	3.8	13
8	Porous Strontium Chloride Scaffolded by Graphene Networks as Ammonia Carriers. Advanced Functional Materials, 2021, 31, 2008505.	14.9	6
9	Graphene Networks: Porous Strontium Chloride Scaffolded by Graphene Networks as Ammonia Carriers (Adv. Funct. Mater. 30/2021). Advanced Functional Materials, 2021, 31, 2170220.	14.9	O
10	Processing, microstructure and high temperature dry sliding wear of a Cr-Fe-Hf-Mn-Ti-Ta-V high-entropy alloy based composite. Materials Today Communications, 2021, 28, 102657.	1.9	11
11	Preparation, properties and high-temperature oxidation resistance of MoSi2-HfO2 composite coating to protect niobium using spent MoSi2-based materials. Ceramics International, 2021, 47, 27091-27099.	4.8	11
12	Refractory multicomponent boron-carbide high entropy oxidation-protective coating for carbon-carbon composites. Surface and Coatings Technology, 2021, 425, 127697.	4.8	6
13	Preparation of Porous NiAl Intermetallic with Controllable Shape and Pore Structure by Rapid Thermal Explosion with Space Holder. Metals and Materials International, 2021, 27, 4216-4224.	3.4	7
14	Transformation of metastable dual-phase (Ti0.25V0.25Zr0.25Hf0.25)B2 to stable high-entropy single-phase boride by thermal annealing. Applied Physics Letters, 2021, 119, .	3.3	9
15	A phase conversion method to anchor ZIF-8 onto a PAN nanofiber surface for CO ₂ capture. RSC Advances, 2021, 12, 664-670.	3.6	12
16	A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 2021, 374, 1464-1469.	12.6	308
17	Highly Structured Nanofiber Zeolite Materials for Biogas Upgrading. Energy Technology, 2020, 8, 1900781.	3.8	13
18	Carbon-reinforced MgCl2 composites with high structural stability as robust ammonia carriers for selective catalytic reduction system. Journal of Environmental Chemical Engineering, 2020, 8, 103584.	6.7	8

#	Article	IF	Citations
19	Effect of SiC on Microstructure, Phase Evolution, and Mechanical Properties of Spark-Plasma-Sintered High-Entropy Ceramic Composite. Ceramics, 2020, 3, 359-371.	2.6	15
20	High Temperature Performance of Spark Plasma Sintered W0.5 (TaTiVCr)0.5 Alloy. Metals, 2020, 10, 1512.	2.3	14
21	Rapid Ammonia Carriers for SCR Systems Using MOFs [M2(adc)2(dabco)] (M = Co, Ni, Cu, Zn). Catalysts, 2020, 10, 1444.	3.5	3
22	Freeze Granulated Zeolites X and A for Biogas Upgrading. Molecules, 2020, 25, 1378.	3.8	13
23	High-Entropy Ceramics., 2020, , .		1
24	High temperature tribology and wear of selective laser melted (SLM) 316L stainless steel. Wear, 2020, 448-449, 203228.	3.1	34
25	Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering. ACS Applied Materials & ACS	8.0	62
26	Porous alumina ceramics by gel casting: Effect of type of sacrificial template on the properties. International Journal of Ceramic Engineering & Science, 2019, 1, 77-84.	1.2	17
27	Ultra-high strength martensitic 420 stainless steel with high ductility. Additive Manufacturing, 2019, 29, 100803.	3.0	39
28	Adaptive nanolaminate coating by atomic layer deposition. Thin Solid Films, 2019, 692, 137631.	1.8	1
29	Exothermic behavior and thermodynamic analysis for the formation of porous TiAl3 intermetallics sintering with different heating rates. Journal of Alloys and Compounds, 2019, 811, 152056.	5.5	18
30	Microstructure-Tailored Stainless Steels with High Mechanical Performance at Elevated Temperature. , 2019, , .		4
31	Processing and Characterization of Refractory Quaternary and Quinary High-Entropy Carbide Composite. Entropy, 2019, 21, 474.	2.2	26
32	Advanced Mechanical Strength in Post Heat Treated SLM 2507 at Room and High Temperature Promoted by Hard/Ductile Sigma Precipitates. Metals, 2019, 9, 199.	2.3	34
33	Recycling Molybdenum Oxides from Waste Molybdenum Disilicides: Oxidation Experimental Study and Photocatalytic Properties. Oxidation of Metals, 2019, 92, 1-12.	2.1	6
34	High temperature tribology of CuMoTaWV high entropy alloy. Wear, 2019, 426-427, 412-419.	3.1	68
35	A high-entropy B ₄ (HfMo ₂ TaTi)C and SiC ceramic composite. Dalton Transactions, 2019, 48, 5161-5167.	3.3	47
36	Mechanical Properties of a Metal–Organic Framework formed by Covalent Cross-Linking of Metal–Organic Polyhedra. Journal of the American Chemical Society, 2019, 141, 1045-1053.	13.7	89

#	Article	IF	Citations
37	Fabrication and Characterization of Highly Porous FeAlâ€Based Intermetallics by Thermal Explosion Reaction. Advanced Engineering Materials, 2019, 21, 1801110.	3.5	12
38	Laminated porous diatomite monoliths for adsorption of dyes from water. Environmental Progress and Sustainable Energy, 2019, 38, S377.	2.3	8
39	Microstructure Evolution and Pore Formation Mechanism of Porous TiAl3 Intermetallics via Reactive Sintering. Acta Metallurgica Sinica (English Letters), 2018, 31, 440-448.	2.9	18
40	Solution-mediated growth of NBA-ZSM-5 crystals retarded by gel entrapment. Journal of Crystal Growth, 2018, 487, 57-64.	1.5	4
41	A novel fabrication strategy for highly porous FeAl/Al2O3 composite by thermal explosion in vacuum. Vacuum, 2018, 149, 225-230.	3.5	24
42	Microsphere Assemblies via Phosphonate Monoester Coordination Chemistry. Chemistry - A European Journal, 2018, 24, 1533-1538.	3.3	7
43	In situ fabrication and properties of 0.4MoB-0.1SiC-xMoSi2 composites by self-propagating synthesis and hot-press sintering. Ceramics International, 2018, 44, 51-56.	4.8	4
44	Processing of Macroporous Alumina Ceramics Using Pre-Expanded Polymer Microspheres as Sacrificial Template. Ceramics, 2018, 1, 329-342.	2.6	11
45	Optimized cesium and potassium ion-exchanged zeolites A and X granules for biogas upgrading. RSC Advances, 2018, 8, 37277-37285.	3.6	12
46	High temperature tribology of polymer derived ceramic composite coatings. Scientific Reports, 2018, 8, 15105.	3.3	15
47	Fabrication of Highly Porous CuAl Intermetallic by Thermal Explosion Using NaCl Space Holder. Jom, 2018, 70, 2173-2178.	1.9	6
48	Subgrain-controlled grain growth in the laser-melted 316 L promoting strength at high temperatures. Royal Society Open Science, 2018, 5, 172394.	2.4	31
49	Oxidation Resistance of Highly Porous Fe-Al Foams Prepared by Thermal Explosion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3683-3691.	2.2	10
50	Effect of 10Âwt% VC on the Friction and Sliding Wear of Spark Plasma–Sintered WC–12Âwt% Co Cemented Carbides. Tribology Transactions, 2017, 60, 276-283.	2.0	6
51	Porous mullite thermal insulators from coal gangue fabricated by a starch-based foam gel-casting method. Journal of the Australian Ceramic Society, 2017, 53, 287-291.	1.9	31
52	Novel Fabrication and Enhanced Photocatalytic MB Degradation of Hierarchical Porous Monoliths of MoO3 Nanoplates. Scientific Reports, 2017, 7, 1845.	3.3	64
53	Structured emulsion-templated porous copolymer based on photopolymerization for carbon capture. Journal of CO2 Utilization, 2017, 21, 473-479.	6.8	12
54	Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism. Scientific Reports, 2017, 7, 12391.	3.3	30

#	Article	IF	Citations
55	Thin zeolite laminates for rapid and energy-efficient carbon capture. Scientific Reports, 2017, 7, 10988.	3.3	12
56	Effect of heating rate on porous TiAl-based intermetallics synthesized by thermal explosion. Materials and Manufacturing Processes, 2017, 32, 489-494.	4.7	19
57	Solidâ€state ¹³ C, ¹⁵ N and ²⁹ Si NMR characterization of block copolymers with CO ₂ capture properties. Magnetic Resonance in Chemistry, 2016, 54, 734-739.	1.9	6
58	Processing, microstructure and properties of hierarchically porous Cu. Materials Express, 2016, 6, 271-276.	0.5	3
59	Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceramics International, 2016, 42, 12414-12421.	4.8	43
60	Hierarchical porous TiAl3 intermetallics synthesized by thermal explosion with a leachable space-holder material. Materials Letters, 2016, 181, 261-264.	2.6	26
61	Surface microstructural changes of spark plasma sintered zirconia after grinding and annealing. Ceramics International, 2016, 42, 15610-15617.	4.8	6
62	Synthesis, microstructure and mechanical properties of (Mo,Ti)Si2/Al2O3 composites prepared by thermite-reaction-assisted combustion synthesis. Journal of Alloys and Compounds, 2016, 688, 870-877.	5.5	10
63	Synthesis and Properties of MoSi ₂ –MoB–SiC Ceramics. Journal of the American Ceramic Society, 2016, 99, 1147-1150.	3.8	27
64	Mixed anionic surfactant-templated mesoporous silica nanoparticles for fluorescence detection of Fe ³⁺ . Dalton Transactions, 2016, 45, 508-514.	3.3	25
65	Highly porous open cellular TiAl-based intermetallics fabricated by thermal explosion with space holder process. Intermetallics, 2016, 68, 95-100.	3.9	51
66	Formation of Moâ^'Siâ^'Ti Alloys by Selfâ^'propagating Combustion Synthesis. Materials Research, 2015, 18, 806-812.	1.3	8
67	Nanocellulose–Zeolite Composite Films for Odor Elimination. ACS Applied Materials & 2015, 7, 14254-14262.	8.0	44
68	Mechanical performance and CO2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 2015, 35, 2607-2618.	5.7	51
69	Effect of annealing environment on the crack healing and mechanical properties of (Mo0.97Nb0.03)(Si0.97Al0.03)2. Journal of Alloys and Compounds, 2015, 634, 109-114.	5.5	9
70	Preparation of graded silicalite-1 substrates for all-zeolite membranes with excellent CO 2 /H 2 separation performance. Journal of Membrane Science, 2015, 493, 206-211.	8.2	20
71	Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO2 Uptake. Materials, 2014, 7, 5507-5519.	2.9	24
72	Aluminophosphate monoliths with high CO ₂ -over-N ₂ selectivity and CO ₂ capture capacity. RSC Advances, 2014, 4, 55877-55883.	3.6	19

#	Article	IF	Citations
73	Studies on the adsorption of chromium(VI) onto 3-Mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science, 2014, 425, 36-43.	9.4	87
74	Structuring adsorbents and catalysts by processing of porous powders. Journal of the European Ceramic Society, 2014, 34, 1643-1666.	5.7	264
75	Synthesis, microstructure and properties of MoSi 2 –5 vol%Al 2 O 3 composites. Ceramics International, 2014, 40, 16381-16387.	4.8	27
76	Ceramic reinforced high modulus steel composites: processing, microstructure and properties. Canadian Metallurgical Quarterly, 2014, 53, 253-263.	1.2	43
77	Oxidation properties of self-propagating high temperature synthesized niobium disilicide. Corrosion Science, 2014, 85, 311-317.	6.6	28
78	Microstructure and properties of Ti5Si3-based porous intermetallic compounds fabricated via combustion synthesis. Journal of Alloys and Compounds, 2014, 612, 337-342.	5.5	29
79	Laminated Adsorbents with Very Rapid CO ₂ Uptake by Freeze-Casting of Zeolites. ACS Applied Materials & Interfaces, 2013, 5, 2669-2676.	8.0	61
80	Chemical durability of hierarchically porous silicalite-I membrane substrates in aqueous media. Journal of Materials Research, 2013, 28, 2253-2259.	2.6	3
81	Colloidal processing and CO2 capture performance of sacrificially templated zeolite monoliths. Applied Energy, 2012, 97, 289-296.	10.1	55
82	Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly. Energy and Environmental Science, 2012, 5, 7664.	30.8	144
83	Combustion synthesis of (Mo1ⰒxCrx)Si2 (x=0.00–0.30) alloys in SHS mode. Advanced Powder Technology, 2012, 23, 133-138.	4.1	20
84	Hierarchically porous binder-free silicalite-1 discs: a novel support for all-zeolite membranes. Journal of Materials Chemistry, 2011, 21, 8822.	6.7	24
85	Enhanced sintering, microstructure evolution and mechanical properties of 316L stainless steel with MoSi2 addition. Journal of Alloys and Compounds, 2011, 509, 8794-8797.	5.5	18
86	Colloidal Processing and Thermal Treatment of Binderless Hierarchically Porous Zeolite 13X Monoliths for CO2 Capture. Journal of the American Ceramic Society, 2011, 94, 92-98.	3.8	49
87	A study of the sintering of diatomaceous earth to produce porous ceramic monoliths with bimodal porosity and high strength. Powder Technology, 2010, 201, 253-257.	4.2	98
88	Strong Hierarchically Porous Monoliths by Pulsed Current Processing of Zeolite Powder Assemblies. ACS Applied Materials & Diterfaces, 2010, 2, 732-737.	8.0	52
89	Effects of tungsten and aluminum additions on the formation of molybdenum disilicide by mechanically-induced self-propagating reaction. Journal of Alloys and Compounds, 2010, 490, 388-392.	5.5	9
90	Effect of diluent on the synthesis of molybdenum disilicide by mechanically-induced self-propagating reaction. Journal of Alloys and Compounds, 2010, 494, 301-304.	5.5	7

#	Article	IF	CITATIONS
91	Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites. Materials Characterization, 2009, 60, 327-336.	4.4	147
92	Hierarchically Porous Ceramics from Diatomite Powders by Pulsed Current Processing. Journal of the American Ceramic Society, 2009, 92, 338-343.	3.8	70
93	Synthesis, microstructure and mechanical properties of Al2O3 reinforced Ni3Al matrix composite. Materials Science & Discrete and Processing, 2009, 499, 415-420.	5.6	8
94	Microstructure and property evolution during the sintering of stainless steel alloy with Si3N4. Materials Science & Description of Structural Materials: Properties, Microstructure and Processing, 2008, 472, 324-331.	5.6	13
95	Mechanically activated reactive synthesis of refractory molybdenum and tungsten silicides. International Journal of Refractory Metals and Hard Materials, 2008, 26, 173-178.	3.8	17
96	An investigation on the solid state sintering of mechanically alloyed nano-structured 90W–Ni–Fe tungsten heavy alloy. International Journal of Refractory Metals and Hard Materials, 2008, 26, 145-151.	3.8	39
97	Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites. Materials Characterization, 2008, 59, 84-90.	4.4	85
98	Reactive sintering and properties of TiB2 and TiC porous cermets. Materials Letters, 2008, 62, 1242-1245.	2.6	17
99	Adherent and low friction nano-crystalline diamond film grown on titanium using microwave CVD plasma. Diamond and Related Materials, 2008, 17, 294-299.	3.9	35
100	Effect of the composition of starting materials of Mo–Si on the mechanically induced self-propagating reaction. Journal of Alloys and Compounds, 2008, 456, 304-307.	5.5	9
101	Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites. Journal of Alloys and Compounds, 2008, 459, 491-497.	5.5	137
102	Effects of heat treatment on the properties of powder injection molded AIN ceramics. Rare Metals, 2008, 27, 70-73.	7.1	1
103	A new kind of age hardenable martensitic stainless steel with high strength and toughness. Ironmaking and Steelmaking, 2007, 34, 285-289.	2.1	4
104	A new method to process high strength TiCN stainless steel matrix composites. Powder Metallurgy, 2007, 50, 250-254.	1.7	4
105	Behavior of residual carbon in Sm(Co, Fe, Cu, Zr)z permanent magnets. Journal of Alloys and Compounds, 2007, 440, 89-93.	5.5	9
106	Influence of heat treatment on fracture and magnetic properties of radially oriented Sm2Co17 permanent magnets. Transactions of Nonferrous Metals Society of China, 2007, 17, 491-495.	4.2	4
107	Sintering behavior, microstructure and properties of TiC-FeCr hard alloy. International Journal of Minerals, Metallurgy, and Materials, 2007, 14, 89-93.	0.2	7
108	Effect of Additive Cu-10Sn Alloy on Sintering Behavior of Elemental Powders in Composition of 465 Stainless Steel. Journal of Iron and Steel Research International, 2007, 14, 61-64.	2.8	6

#	Article	IF	Citations
109	Processing, microstructure, properties and wear behavior of in situ synthesized TiB2 and TiC thick films on steel substrates. Surface and Coatings Technology, 2007, 201, 9603-9609.	4.8	10
110	Two-step growth of high-quality nano-diamond films using CH4/H2 gas mixture. Vacuum, 2007, 81, 713-717.	3.5	12
111	On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites. Acta Materialia, 2007, 55, 1467-1477.	7.9	44
112	Effect of WC particle size on the microstructure, mechanical properties and fracture behavior of WC–(W, Ti, Ta) C–6wt% Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 2007, 25, 405-410.	3.8	32
113	Tensile behavior change depending on the varying tungsten content of W–Ni–Fe alloys. International Journal of Refractory Metals and Hard Materials, 2007, 25, 380-385.	3.8	78
114	TiB2 and TiC stainless steel matrix composites. Materials Letters, 2007, 61, 189-191.	2.6	73
115	Synthesis and characterization of nano-crystalline CVD diamond film on pure titanium using Ar/CH4/H2 gas mixture. Materials Letters, 2007, 61, 2139-2142.	2.6	28
116	Magnetic properties and microstructure of radially oriented Sm(Co,Fe,Cu,Zr)z ring magnets. Materials Letters, 2007, 61, 5271-5274.	2.6	5
117	Sintering Behavior of Elemental Powders with FeB Addition in the Composition of Martensitic Stainless steel. Journal of Materials Engineering and Performance, 2007, 16, 726-729.	2.5	6
118	Effect of inner oxidant on self-propagating high-temperature synthesis of MnZn-ferrite powder. Rare Metals, 2006, 25, 553-556.	7.1	1
119	Development of Si3N4/Al composite by pressureless melt infiltration. Transactions of Nonferrous Metals Society of China, 2006, 16, 629-632.	4.2	24
120	Lubrication effectiveness of composite lubricants during P/M electrostatic die wall lubrication and warm compaction. International Journal of Minerals, Metallurgy, and Materials, 2006, 13, 528-531.	0.2	2
121	Self-propagating high temperature synthesis of MoSi2 matrix composites. Rare Metals, 2006, 25, 225-230.	7.1	14
122	TiC-maraging stainless steel composite: microstructure, mechanical and wear properties. Rare Metals, 2006, 25, 630-635.	7.1	9
123	Effect of Cu3P addition on sintering behaviour of elemental powders in the composition of 465 stainless steel. Powder Metallurgy, 2006, 49, 28-33.	1.7	9