Glyn A Collinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9519284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Revised Understanding of the Structure of the Venusian Magnetotail From a Highâ€Altitude Intercept With a Tail Ray by Parker Solar Probe. Geophysical Research Letters, 2022, 49, .	4.0	5
2	The Solar Wind at (16) Psyche: Predictions for a Metal World. Astrophysical Journal, 2022, 927, 202.	4.5	4
3	The Endurance Rocket Mission. Space Science Reviews, 2022, 218, .	8.1	2
4	Depleted Plasma Densities in the Ionosphere of Venus Near Solar Minimum From <i>Parker Solar Probe</i> Observations of Upper Hybrid Resonance Emission. Geophysical Research Letters, 2021, 48, e2020GL092243.	4.0	7
5	Impact of space weather on climate and habitability of terrestrial-type exoplanets. International Journal of Astrobiology, 2020, 19, 136-194.	1.6	125
6	Foreshock Cavities at Venus and Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028023.	2.4	7
7	Foreshock Bubbles at Venus: Hybrid Simulations and VEX Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027056.	2.4	14
8	Constantly forming sporadic E-like layers and rifts in the Martian ionosphere and their implications for Earth. Nature Astronomy, 2020, 4, 486-491.	10.1	14
9	Traveling Ionospheric Disturbances at Mars. Geophysical Research Letters, 2019, 46, 4554-4563.	4.0	13
10	Ionospheric Ambipolar Electric Fields of Mars and Venus: Comparisons Between Theoretical Predictions and Direct Observations of the Electric Potential Drop. Geophysical Research Letters, 2019, 46, 1168-1176.	4.0	21
11	MAVEN Case Studies of Plasma Dynamics in Lowâ€Altitude Crustal Magnetic Field at Mars 1: Dayside Ion Spikes Associated With Radial Crustal Magnetic Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 1239-1261.	2.4	6
12	Locally Generated ULF Waves in the Martian Magnetosphere: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 8707-8726.	2.4	8
13	New Results From <i>Galileo</i> 's First Flyby of Ganymede: Reconnectionâ€Driven Flows at the Lowâ€Latitude Magnetopause Boundary, Crossing the Cusp, and Icy Ionospheric Escape. Geophysical Research Letters, 2018, 45, 3382-3392.	4.0	20
14	Solar Wind Induced Waves in the Skies of Mars: Ionospheric Compression, Energization, and Escape Resulting From the Impact of Ultralow Frequency Magnetosonic Waves Generated Upstream of the Martian Bow Shock. Journal of Geophysical Research: Space Physics, 2018, 123, 7241-7256.	2.4	32
15	A hybrid electrostatic retarding potential analyzer for the measurement of plasmas at extremely high energy resolution. Review of Scientific Instruments, 2018, 89, 113306.	1.3	7
16	Fieldâ€Aligned Potentials at Mars From MAVEN Observations. Geophysical Research Letters, 2018, 45, 10,119.	4.0	31
17	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
18	MAVEN Observations of Solar Windâ€Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 4129-4149.	2.4	40

GLYN A COLLINSON

#	Article	IF	CITATIONS
19	Fieldâ€Aligned Electrostatic Potentials Above the Martian Exobase From MGS Electron Reflectometry: Structure and Variability. Journal of Geophysical Research E: Planets, 2018, 123, 67-92.	3.6	14
20	Structure, dynamics, and seasonal variability of the Marsâ€solar wind interaction: MAVEN Solar Wind Ion Analyzer inâ€flight performance and science results. Journal of Geophysical Research: Space Physics, 2017, 122, 547-578.	2.4	191
21	Unique, nonâ€Earthlike, meteoritic ion behavior in upper atmosphere of Mars. Geophysical Research Letters, 2017, 44, 3066-3072.	4.0	30
22	Structure and Properties of the Foreshock at Venus. Journal of Geophysical Research: Space Physics, 2017, 122, 10,275.	2.4	17
23	Spontaneous hot flow anomalies at Mars and Venus. Journal of Geophysical Research: Space Physics, 2017, 122, 9910-9923.	2.4	15
24	A study of ionopause perturbation and associated boundary wave formation at Venus. Journal of Geophysical Research: Space Physics, 2017, 122, 4284-4298.	2.4	2
25	Electric Mars: A large transâ€ŧerminator electric potential drop on closed magnetic field lines above Utopia Planitia. Journal of Geophysical Research: Space Physics, 2017, 122, 2260-2271.	2.4	16
26	Validation of single spacecraft methods for collisionless shock velocity estimation. Journal of Geophysical Research: Space Physics, 2017, 122, 8632-8641.	2.4	3
27	Fast Plasma Investigation for Magnetospheric Multiscale. , 2017, , 329-404.		3
28	Constraining electric fields from electrostatic deflector plates: A brief report and case study from the Fast Plasma Investigation for the Magnetospheric Multiscale Mission. Journal of Geophysical Research: Space Physics, 2016, 121, 7887-7894.	2.4	3
29	Properties of planetward ion flows in Venus' magnetotail. Icarus, 2016, 274, 73-82.	2.5	25
30	Fast Plasma Investigation for Magnetospheric Multiscale. Space Science Reviews, 2016, 199, 331-406.	8.1	960
31	The electric wind of Venus: A global and persistent "polar windâ€â€like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophysical Research Letters, 2016, 43, 5926-5934.	4.0	31
32	MAVEN observation of an obliquely propagating lowâ€frequency wave upstream of Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 2374-2389.	2.4	19
33	Magnetotail dynamics at Mars: Initial MAVEN observations. Geophysical Research Letters, 2015, 42, 8828-8837.	4.0	52
34	PROPAGATION OF THE 2014 JANUARY 7 CME AND RESULTING GEOMAGNETIC NON-EVENT. Astrophysical Journal, 2015, 812, 145.	4.5	43
35	The role of the Hall effect in the global structure and dynamics of planetary magnetospheres: Ganymede as a case study. Journal of Geophysical Research: Space Physics, 2015, 120, 5377-5392.	2.4	35
36	Magnetic reconnection in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8838-8845.	4.0	59

GLYN A COLLINSON

#	Article	IF	CITATIONS
37	Electric Mars: The first direct measurement of an upper limit for the Martian "polar wind―electric potential. Geophysical Research Letters, 2015, 42, 9128-9134.	4.0	38
38	A hot flow anomaly at Mars. Geophysical Research Letters, 2015, 42, 9121-9127.	4.0	20
39	The impact of a slow interplanetary coronal mass ejection on Venus. Journal of Geophysical Research: Space Physics, 2015, 120, 3489-3502.	2.4	14
40	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
41	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
42	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	1.7	56
43	A survey of hot flow anomalies at Venus. Journal of Geophysical Research: Space Physics, 2014, 119, 978-991.	2.4	21
44	Active current sheets and candidate hot flow anomalies upstream of Mercury's bow shock. Journal of Geophysical Research: Space Physics, 2014, 119, 853-876.	2.4	22
45	The extension of ionospheric holes into the tail of Venus. Journal of Geophysical Research: Space Physics, 2014, 119, 6940-6953.	2.4	17
46	"Snowplow―injection front effects. Journal of Geophysical Research: Space Physics, 2013, 118, 6478-6488.	2.4	6
47	The geometric factor of electrostatic plasma analyzers: A case study from the Fast Plasma Investigation for the Magnetospheric Multiscale mission. Review of Scientific Instruments, 2012, 83, 033303.	1.3	30
48	Hot flow anomalies at Venus. Journal of Geophysical Research, 2012, 117, .	3.3	35
49	Short largeâ€amplitude magnetic structures (SLAMS) at Venus. Journal of Geophysical Research, 2012, 117, .	3.3	17
50	Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission. Experimental Astronomy, 2012, 33, 587-644.	3.7	15
51	Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Experimental Astronomy, 2012, 33, 753-791.	3.7	44
52	Penetrators for in situ subsurface investigations of Europa. Advances in Space Research, 2011, 48, 725-742.	2.6	51
53	On variable geometric factor systems for top-hat electrostatic space plasma analyzers. Measurement Science and Technology, 2010, 21, 105903.	2.6	10
54	Electron optical study of the Venus Express ASPERA-4 Electron Spectrometer (ELS) top-hat electrostatic analyser. Measurement Science and Technology, 2009, 20, 055204.	2.6	30

#	Article	IF	CITATIONS
55	Ionospheric photoelectrons at Venus: Initial observations by ASPERA-4 ELS. Planetary and Space Science, 2008, 56, 802-806.	1.7	48