Irene Hallyburton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9519134/publications.pdf

Version: 2024-02-01

31	1,905	19	32
papers	citations	h-index	g-index
35	35	35	3051
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	27.8	353
2	N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature, 2010, 464, 728-732.	27.8	272
3	Comparison of a High-Throughput High-Content Intracellular Leishmania donovani Assay with an Axenic Amastigote Assay. Antimicrobial Agents and Chemotherapy, 2013, 57, 2913-2922.	3.2	135
4	Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Advances, 2013, 3, 14444.	3.6	104
5	Discovery of a Novel Class of Orally Active Trypanocidal <i>N</i> Journal of Medicinal Chemistry, 2012, 55, 140-152.	6.4	102
6	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	7.1	94
7	Whole Organism High-Content Screening by Label-Free, Image-Based Bayesian Classification for Parasitic Diseases. PLoS Neglected Tropical Diseases, 2012, 6, e1762.	3.0	93
8	The Suppression of Galactose Metabolism in Procylic Form Trypanosoma brucei Causes Cessation of Cell Growth and Alters Procyclin Glycoprotein Structure and Copy Number. Journal of Biological Chemistry, 2005, 280, 19728-19736.	3.4	70
9	Identification of a κ-opioid agonist as a potent and selective lead for drug development against human African trypanosomiasis. Biochemical Pharmacology, 2010, 80, 1478-1486.	4.4	69
10	Open Source Drug Discovery: Highly Potent Antimalarial Compounds Derived from the Tres Cantos Arylpyrroles. ACS Central Science, 2016, 2, 687-701.	11.3	68
11	Discovery of a Quinoline-4-carboxamide Derivative with a Novel Mechanism of Action, Multistage Antimalarial Activity, and Potent in Vivo Efficacy. Journal of Medicinal Chemistry, 2016, 59, 9672-9685.	6.4	66
12	Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials. Journal of Medicinal Chemistry, 2020, 63, 11585-11601.	6.4	60
13	Lead Optimization of a Pyrazole Sulfonamide Series of <i>Trypanosoma bruceiN</i> -Myristoyltransferase Inhibitors: Identification and Evaluation of CNS Penetrant Compounds as Potential Treatments for Stage 2 Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2014. 57, 9855-9869.	6.4	57
14	Pharmacological Validation of <i>N</i> Myristoyltransferase as a Drug Target in <i>Leishmania donovani</i> . ACS Infectious Diseases, 2019, 5, 111-122.	3.8	55
15	Biochemical and Structural Characterization of Selective Allosteric Inhibitors of the <i>Plasmodium falciparum</i> Drug Target, Prolyl-tRNA-synthetase. ACS Infectious Diseases, 2017, 3, 34-44.	3.8	45
16	Hexameric Assembly of the Bifunctional Methylerythritol 2,4-Cyclodiphosphate Synthase and Protein-Protein Associations in the Deoxy-xylulose-dependent Pathway of Isoprenoid Precursor Biosynthesis. Journal of Biological Chemistry, 2004, 279, 52753-52761.	3.4	43
17	A Molecular Hybridization Approach for the Design of Potent, Highly Selective, and Brain-Penetrant <i>N</i> -Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 8374-8389.	6.4	41
18	Discovery of Indoline-2-carboxamide Derivatives as a New Class of Brain-Penetrant Inhibitors of <i>Trypanosoma brucei</i> . Journal of Medicinal Chemistry, 2015, 58, 7695-7706.	6.4	28

#	Article	IF	Citations
19	The hepatic PP1 glycogenâ€targeting subunit interaction with phosphorylase <i>a</i> can be blocked by Câ€terminal tyrosine deletion or an indole drug. FEBS Letters, 2007, 581, 4749-4753.	2.8	26
20	Development of Smallâ€Molecule <i>Trypanosoma brucei N</i> â€Myristoyltransferase Inhibitors: Discovery and Optimisation of a Novel Binding Mode. ChemMedChem, 2015, 10, 1821-1836.	3.2	20
21	Quinol derivatives as potential trypanocidal agents. Bioorganic and Medicinal Chemistry, 2012, 20, 1607-1615.	3.0	17
22	Discovery of Inhibitors of <i>Trypanosoma brucei</i> by Phenotypic Screening of a Focused Protein Kinase Library. ChemMedChem, 2015, 10, 1809-1820.	3.2	15
23	Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials. Journal of Medicinal Chemistry, 2016, 59, 6101-6120.	6.4	13
24	Screening a protein kinase inhibitor library against Plasmodium falciparum. Malaria Journal, 2017, 16, 446.	2.3	12
25	Escaping from Flatland: Antimalarial Activity of sp ³ -Rich Bridged Pyrrolidine Derivatives. ACS Medicinal Chemistry Letters, 2020, 11, 2497-2503.	2.8	10
26	An Open Drug Discovery Competition: Experimental Validation of Predictive Models in a Series of Novel Antimalarials. Journal of Medicinal Chemistry, 2021, 64, 16450-16463.	6.4	8
27	Optimisation of the Antiâ€ <i>Trypanosoma brucei</i> Activity of the Opioid Agonist U50488. ChemMedChem, 2011, 6, 1832-1840.	3.2	7
28	Substituted Aminoacetamides as Novel Leads for Malaria Treatment. ChemMedChem, 2019, 14, 1329-1335.	3.2	5
29	Preparation, biological & Deminformatics-based assessment of N2,N4-diphenylpyrimidine-2,4-diamine as potential Kinase-targeted antimalarials. Bioorganic and Medicinal Chemistry, 2021, 46, 116348.	3.0	5
30	Initiating a crystallographic analysis of recombinant (S)-2-hydroxypropylphosphonic acid epoxidase fromStreptomyces wedmorensis. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 534-536.	0.7	3
31	Potent antiplasmodial alkaloids from the rhizobacterium Pantoea agglomerans as hemozoin modulators. Bioorganic Chemistry, 2021, 115, 105215.	4.1	3