Miguel López-Botet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9518404/publications.pdf

Version: 2024-02-01

25034 22166 13,689 153 57 113 citations h-index g-index papers 12435 160 160 160 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Characterization of $<$ scp $>$ KIR $<$ /scp $><$ sup $>+<$ /sup $><$ scp $>$ NK $<$ /scp $>$ cell subsets with a monoclonal antibody selectively recognizing $<$ scp $>$ KIR2DL1 $<$ /scp $>$ and blocking the specific interaction with $<$ scp $>$ HLAâ \in C $<$ /scp $>$. Hla, 2022, , .	0.6	5
2	Epitope characterization of a monoclonal antibody that selectively recognizes <code><scp>KIR2DL1</scp>allotypes</code> . Hla, 2022, , .	0.6	3
3	Reduced expansion of CD94/NKG2C ⁺ NK cells in chronic lymphocytic leukemia and CLLâ€like monoclonal Bâ€cell lymphocytosis is not related to increased human cytomegalovirus seronegativity or <i>NKG2C</i> deletions. International Journal of Laboratory Hematology, 2021, 43, 1032-1040.	1.3	6
4	Complete genomic characterization of a new <scp>KLRC2</scp> allele, <i><scp>NKG2C</scp>*03</i> Hla, 2021, 98, 259-261.	0.6	4
5	NK cells eliminate Epstein-Barr virus bound to B cells through a specific antibody-mediated uptake. PLoS Pathogens, 2021, 17, e1009868.	4.7	11
6	Long-Term Evolution of the Adaptive NKG2C+ NK Cell Response to Cytomegalovirus Infection in Kidney Transplantation: An Insight on the Diversity of Host–Pathogen Interaction. Journal of Immunology, 2021, 207, 1882-1890.	0.8	2
7	CD137 Costimulation Counteracts TGF \hat{l}^2 Inhibition of NK-cell Antitumor Function. Cancer Immunology Research, 2021, 9, 1476-1490.	3.4	15
8	Pretransplant adaptive NKG2C+ NK cells protect against cytomegalovirus infection in kidney transplant recipients. American Journal of Transplantation, 2020, 20, 663-676.	4.7	15
9	Adaptive NKG2C+ natural killer cells are related to exacerbations and nutritional abnormalities in COPD patients. Respiratory Research, 2020, 21, 63.	3.6	8
10	Haplotype-Based Analysis of KIR-Gene Profiles in a South European Population—Distribution of Standard and Variant Haplotypes, and Identification of Novel Recombinant Structures. Frontiers in Immunology, 2020, 11, 440.	4.8	27
11	Long-Term Redistribution of Peripheral Lymphocyte Subpopulations after Switching from Calcineurin to mTOR Inhibitors in Kidney Transplant Recipients. Journal of Clinical Medicine, 2020, 9, 1088.	2.4	5
12	Impact of cytomegalovirus infection on B cell differentiation and cytokine production in multiple sclerosis. Journal of Neuroinflammation, 2020, 17, 161.	7.2	15
13	Adaptive Features of Natural Killer Cells in Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 2403.	4.8	17
14	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
15	High Numbers of Circulating CD57+ NK Cells Associate with Resistance to HER2-Specific Therapeutic Antibodies in HER2+ Primary Breast Cancer. Cancer Immunology Research, 2019, 7, 1280-1292.	3.4	25
16	Peripheral blood lymphocyte subsets change after steroid withdrawal in renal allograft recipients: a prospective study. Scientific Reports, 2019, 9, 7453.	3.3	9
17	Human Cytomegalovirus Antigen Presentation by HLA-DR+ NKG2C+ Adaptive NK Cells Specifically Activates Polyfunctional Effector Memory CD4+ T Lymphocytes. Frontiers in Immunology, 2019, 10, 687.	4.8	39
18	Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocyte-deficient mice reconstituted with human NK cells. Oncolmmunology, 2019, 8, e1599636.	4.6	20

#	Article	IF	CITATIONS
19	Serum cytokine levels as predictive biomarkers of benefit from ipilimumab in small cell lung cancer. Oncolmmunology, 2019, 8, e1593810.	4.6	44
20	NK Cell Infiltrates and HLA Class I Expression in Primary HER2+ Breast Cancer Predict and Uncouple Pathological Response and Disease-free Survival. Clinical Cancer Research, 2019, 25, 1535-1545.	7.0	86
21	Reduced Expression of the CD94/NKG2C NK Cell Receptor in Chronic Lymphocytic Leukemia (CLL) and CLL-like Monoclonal B-Cell Lymphocytosis (MBL). Blood, 2019, 134, 5457-5457.	1.4	1
22	Assessment of neuronal autoantibodies in patients with small cell lung cancer treated with chemotherapy with or without ipilimumab. Oncolmmunology, 2018, 7, e1395125.	4.6	26
23	Low cytomegalovirus seroprevalence in early multiple sclerosis: a case for the †hygiene hypothesis'?. European Journal of Neurology, 2018, 25, 925-933.	3.3	26
24	Targeting NK-cell checkpoints for cancer immunotherapy. Current Opinion in Immunology, 2017, 45, 73-81.	5.5	158
25	Antibody-Dependent NK Cell Activation Differentially Targets EBV-Infected Cells in Lytic Cycle and Bystander B Lymphocytes Bound to Viral Antigen–Containing Particles. Journal of Immunology, 2017, 199, 656-665.	0.8	30
26	Adaptive NKG2C+ NK Cell Response and the Risk of Cytomegalovirus Infection in Kidney Transplant Recipients. Journal of Immunology, 2017, 198, 94-101.	0.8	58
27	Impact of Zygosity on Bimodal Phenotype Distributions. Biophysical Journal, 2017, 113, 148-156.	0.5	0
28	Dual Role of Natural Killer Cells on Graft Rejection and Control of Cytomegalovirus Infection in Renal Transplantation. Frontiers in Immunology, 2017, 8, 166.	4.8	39
29	Elusive Role of the CD94/NKG2C NK Cell Receptor in the Response to Cytomegalovirus: Novel Experimental Observations in a Reporter Cell System. Frontiers in Immunology, 2017, 8, 1317.	4.8	21
30	Interplay between Natural Killer Cells and Anti-HER2 Antibodies: Perspectives for Breast Cancer Immunotherapy. Frontiers in Immunology, 2017, 8, 1544.	4.8	71
31	Analysis of memory-like natural killer cells in human cytomegalovirus-infected children undergoing ÂÂ+T and B cell-depleted hematopoietic stem cell transplantation for hematological malignancies. Haematologica, 2016, 101, 371-381.	3.5	80
32	Development of the adaptive NK cell response to human cytomegalovirus in the context of aging. Mechanisms of Ageing and Development, 2016, 158, 23-26.	4.6	13
33	Interaction of the LILRB1 inhibitory receptor with HLA class Ia dimers. European Journal of Immunology, 2016, 46, 1681-1690.	2.9	17
34	Relationship of <i>NKG2C</i> Copy Number with the Distribution of Distinct Cytomegalovirus-Induced Adaptive NK Cell Subsets. Journal of Immunology, 2016, 196, 3818-3827.	0.8	75
35	Natural Killer Cell–Based Immunotherapy in Acute Myeloid Leukemia: Lessons for the Future. Clinical Cancer Research, 2016, 22, 1831-1833.	7.0	5
36	Adaptive natural killer cell response to cytomegalovirus and disability progression in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 741-752.	3.0	26

#	Article	IF	Citations
37	Dynamics of the NK-cell subset redistribution induced by cytomegalovirus infection in preterm infants. Human Immunology, 2015, 76, 118-123.	2.4	17
38	Antibody-Mediated Response of NKG2Cbright NK Cells against Human Cytomegalovirus. Journal of Immunology, 2015, 194, 2715-2724.	0.8	110
39	Circulating NK-Cell Subsets in Renal Allograft Recipients With Anti-HLA Donor-Specific Antibodies. American Journal of Transplantation, 2015, 15, 806-814.	4.7	48
40	NK Cell and Ig Interplay in Defense against Herpes Simplex Virus Type 1: Epistatic Interaction of CD16A and IgG1 Allotypes of Variable Affinities Modulates Antibody-Dependent Cellular Cytotoxicity and Susceptibility to Clinical Reactivation. Journal of Immunology, 2015, 195, 1676-1684.	0.8	56
41	NK Receptors: Tools for a Polyvalent Cell Family. Frontiers in Immunology, 2014, 5, 617.	4.8	5
42	The CD94/NKG2C+ NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Seminars in Immunology, 2014, 26, 145-151.	5.6	102
43	<i>NKG2C</i> zygosity influences CD94/NKG2C receptor function and the NKâ€cell compartment redistribution in response to human cytomegalovirus. European Journal of Immunology, 2013, 43, 3268-3278.	2.9	98
44	Functional impact of A91V mutation of the PRF1 perforin gene. Human Immunology, 2013, 74, 14-17.	2.4	15
45	Adaptive reconfiguration of the human NKâ€cell compartment in response to cytomegalovirus: A different perspective of the hostâ€pathogen interaction. European Journal of Immunology, 2013, 43, 1133-1141.	2.9	126
46	Expansion of the NKG2C+ Natural Killer–Cell Subset Is Associated With High-Risk Carotid Atherosclerotic Plaques in Seropositive Patients for Human Cytomegalovirus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2653-2659.	2.4	37
47	Priming of NK Cell Anti-Viral Effector Mechanisms by Direct Recognition of Human Cytomegalovirus. Frontiers in Immunology, 2013, 4, 40.	4.8	25
48	KIR2DL5: An Orphan Inhibitory Receptor Displaying Complex Patterns of Polymorphism and Expression. Frontiers in Immunology, 2012, 3, 289.	4.8	42
49	The Human Cytomegalovirus-Specific <i>UL1</i> Gene Encodes a Late-Phase Glycoprotein Incorporated in the Virion Envelope. Journal of Virology, 2012, 86, 4091-4101.	3.4	26
50	Influence of congenital human cytomegalovirus infection and the NKG2C genotype on NKâ€cell subset distribution in children. European Journal of Immunology, 2012, 42, 3256-3266.	2.9	91
51	CMV and Immunosenescence: from basics to clinics. Immunity and Ageing, 2012, 9, 23.	4.2	158
52	Host Genetic Factors in Susceptibility to Herpes Simplex Type 1 Virus Infection: Contribution of Polymorphic Genes at the Interface of Innate and Adaptive Immunity. Journal of Immunology, 2012, 188, 4412-4420.	0.8	72
53	Assessment of copyâ€number variation in the <scp><i>NKG2C</i></scp> receptor gene in a singleâ€tube and characterization of a reference cell panel, using standard polymerase chain reaction. Tissue Antigens, 2012, 80, 184-187.	1.0	42
54	Natural killer cell-mediated response to human cytomegalovirus-infected macrophages is modulated by their functional polarization. Journal of Leukocyte Biology, 2011, 90, 717-726.	3.3	58

#	Article	IF	CITATIONS
55	Natural killer cell receptor expression reflects the role of human cytomegalovirus in the pathogenesis of a subset of CD4+ T-cell large granular lymphocytosis. Human Immunology, 2011, 72, 226-228.	2.4	5
56	NKp46 and DNAM-1 NK-cell receptors drive the response to human cytomegalovirus-infected myeloid dendritic cells overcoming viral immune evasion strategies. Blood, 2011, 117, 848-856.	1.4	108
57	MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 596-604.	5 . 7	146
58	Natural killer cell phenotype and clinical response to interferon-beta therapy in multiple sclerosis. Clinical Immunology, 2011, 141, 348-356.	3.2	72
59	Association of Atherosclerosis With Expression of the LILRB1 Receptor By Human NK and T-Cells Supports the Infectious Burden Hypothesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2314-2321.	2.4	33
60	Correction: Gender-Associated Differences of Perforin Polymorphisms in the Susceptibility to Multiple Sclerosis. Journal of Immunology, 2011, 187, 1518-1521.	0.8	0
61	Inhibition of NKG2D expression in NK cells by cytokines secreted in response to human cytomegalovirus infection. Blood, 2010, 115, 5170-5179.	1.4	56
62	Natural killer receptors distribution in multiple sclerosis: Relation to clinical course and interferon-beta therapy. Clinical Immunology, 2010, 137, 41-50.	3.2	26
63	Functional analysis of the CD300e receptor in human monocytes and myeloid dendritic cells. European Journal of Immunology, 2010, 40, 722-732.	2.9	32
64	Influence of human cytomegalovirus infection on the NK cell receptor repertoire in children. European Journal of Immunology, 2010, 40, 1418-1427.	2.9	76
65	Gender-Associated Differences of Perforin Polymorphisms in the Susceptibility to Multiple Sclerosis. Journal of Immunology, 2010, 185, 5392-5404.	0.8	27
66	IL-12-Dependent Inducible Expression of the CD94/NKG2A Inhibitory Receptor Regulates CD94/NKG2C+ NK Cell Function. Journal of Immunology, 2009, 182, 829-836.	0.8	58
67	Multiple sclerosis associates with LILRA3 deletion in Spanish patients. Genes and Immunity, 2009, 10, 579-585.	4.1	42
68	Human KIR2DL5 Is an Inhibitory Receptor Expressed on the Surface of NK and T Lymphocyte Subsets. Journal of Immunology, 2007, 178, 4402-4410.	0.8	55
69	The Human Cytomegalovirus MHC Class I Homolog UL18 Inhibits LIR-1+ but Activates LIR-1â^' NK Cells. Journal of Immunology, 2007, 178, 4473-4481.	0.8	120
70	The IREM-1 (CD300f) Inhibitory Receptor Associates with the p85α Subunit of Phosphoinositide 3-Kinase. Journal of Immunology, 2007, 178, 808-816.	0.8	50
71	Reply to Mela and Goodier. Journal of Infectious Diseases, 2007, 195, 159-160.	4.0	9
72	Analysis of expression and function of the inhibitory receptor ILT2 (CD85j/LILRB1/LIR-1) in peripheral blood mononuclear cells from patients with systemic lupus erythematosus (SLE). Journal of Autoimmunity, 2007, 29, 97-105.	6.5	37

#	Article	IF	Citations
73	Expansion of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood, 2006, 107, 3624-3631.	1.4	389
74	Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. European Journal of Immunology, 2006, 36, 3198-3206.	2.9	99
75	Human Cytomegalovirus Infection Is Associated with Increased Proportions of NK Cells That Express the CD94/NKG2C Receptor in Aviremic HIVâ€1–Positive Patients. Journal of Infectious Diseases, 2006, 194, 38-41.	4.0	261
76	CEACAM1 in Cervical Cancer and Precursor Lesions: Association With Human Papillomavirus Infection. Journal of Histochemistry and Cytochemistry, 2006, 54, 1393-1399.	2.5	13
77	NK Cell Receptors Involved in the Response to Human Cytomegalovirus Infection. , 2006, 298, 207-223.		58
78	The CD94/NKG2C killer lectin-like receptor constitutes an alternative activation pathway for a subset of CD8+ T cells. European Journal of Immunology, 2005, 35, 2071-2080.	2.9	71
79	Concentrations of cyclosporin A and FK506 that inhibit IL-2 induction in human T cells do not affect TGF- \hat{l}^21 biosynthesis, whereas higher doses of cyclosporin A trigger apoptosis and release of preformed TGF- \hat{l}^21 . Journal of Leukocyte Biology, 2005, 77, 748-758.	3.3	32
80	Signalling via CD70, a member of the TNF family, regulates T cell functions. Journal of Leukocyte Biology, 2004, 76, 263-270.	3.3	29
81	Natural killer cell receptors for major histocompatibility complex class I and related molecules in cytomegalovirus infection. Tissue Antigens, 2004, 63, 195-203.	1.0	91
82	IREM-1 is a novel inhibitory receptor expressed by myeloid cells. European Journal of Immunology, 2004, 34, 3690-3701.	2.9	79
83	Recruitment of C-terminal Src kinase by the leukocyte inhibitory receptor CD85j. Biochemical and Biophysical Research Communications, 2004, 324, 640-647.	2.1	36
84	Molecular Characterization of a Novel Immune Receptor Restricted to the Monocytic Lineage. Journal of Immunology, 2004, 173, 6703-6711.	0.8	51
85	Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood, 2004, 104, 3664-3671.	1.4	7 54
86	Differential effects of US2, US6 and US11 human cytomegalovirus proteins on HLA class Ia and HLA-E expression: impact on target susceptibility to NK cell subsets. European Journal of Immunology, 2003, 33, 2744-2754.	2.9	62
87	Mutational Analysis of Immunoreceptor Tyrosine-Based Inhibition Motifs of the Ig-Like Transcript 2 (CD85j) Leukocyte Receptor. Journal of Immunology, 2002, 168, 3351-3359.	0.8	54
88	Cloning of two new splice variants of Siglec-10 and mapping of the interaction between Siglec-10 and SHP-1. Biochemical and Biophysical Research Communications, 2002, 296, 355-362.	2.1	34
89	TCR Specificity Dictates CD94/NKG2A Expression by Human CTL. Immunity, 2002, 17, 487-499.	14.3	109
90	Differential expression of inhibitory and activating CD94/NKG2 receptors on NK cell clones. Journal of Immunological Methods, 2002, 264, 109-119.	1.4	37

#	Article	IF	Citations
91	Human T cell receptor-mediated recognition of HLA-E. European Journal of Immunology, 2002, 32, 936-944.	2.9	97
92	Human T cell receptor-mediated recognition of HLA-E. European Journal of Immunology, 2002, 32, 936-944.	2.9	3
93	Molecular studies and NK cell function of a new case of TAP2 homozygous human deficiency. Clinical and Experimental Immunology, 2001, 125, 274-282.	2.6	24
94	Human cytomegalovirus and natural killer-mediated surveillance of HLA class I expression: a paradigm of host-pathogen adaptation. Immunological Reviews, 2001, 181, 193-202.	6.0	45
95	New nomenclature for MHC receptors. Nature Immunology, 2001, 2, 661-661.	14.5	83
96	Mitogen-activated protein kinase activity is involved in effector functions triggered by the CD94/NKG2-C NK receptor specific for HLA-E. European Journal of Immunology, 2000, 30, 2842-2848.	2.9	16
97	The Tyrosine Kinase Pyk-2/Raftk Regulates Natural Killer (Nk) Cell Cytotoxic Response, and Is Translocated and Activated upon Specific Target Cell Recognition and Killing. Journal of Cell Biology, 2000, 149, 1249-1262.	5.2	78
98	NK cell recognition of non-classical HLA class I molecules. Seminars in Immunology, 2000, 12, 109-119.	5.6	146
99	Paired inhibitory and triggering NK cell receptors for HLA class I molecules. Human Immunology, 2000, 61, 7-17.	2.4	94
100	Selective expansion of intraepithelial lymphocytes expressing the HLA-E–specific natural killer receptor CD94 in celiac disease. Gastroenterology, 2000, 118, 867-879.	1.3	227
101	Natural killer cell activation and inhibition by receptors for MHC class I. Current Opinion in Immunology, 1999, 11, 301-307.	5.5	149
102	How do NK cells sense the expression of HLA-G class Ib molecules?. Seminars in Cancer Biology, 1999, 9, 19-26.	9.6	39
103	Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO Journal, 1999, 18, 4250-4260.	7.8	323
104	NK cell mediated recognition of HLA class Ib molecules: role of CD94/NKG2 receptors. Journal of Reproductive Immunology, 1999, 43, 167-173.	1.9	8
105	The ILT2(LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1 and HLA-E molecules co-expressed on target cells. European Journal of Immunology, 1999, 29, 277-283.	2.9	325
106	A novel family of Ig-like receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells. Journal of Leukocyte Biology, 1999, 66, 375-381.	3.3	154
107	The ILT2(LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1 and HLA-E molecules co-expressed on target cells. , 1999, 29, 277.		1
108	Intrahepatic enhanced expression of beta2-microglobulin conformational epitope in acute liver allograft rejection: evidence of modulation by glucocorticoids. Digestive Diseases and Sciences, 1998, 43, 1755-1762.	2.3	4

#	Article	IF	Citations
109	Signaling through human killer cell activating receptors triggers tyrosine phosphorylation of an associated protein complex. European Journal of Immunology, 1998, 28, 599-609.	2.9	93
110	Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor function in heterologous transfectants. European Journal of Immunology, 1998, 28, 1280-1291.	2.9	110
111	HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors: preferential response to an HLA-G-derived nonamer. European Journal of Immunology, 1998, 28, 2854-2863.	2.9	348
112	Structure of the human CD94 C-type lectin gene. Immunogenetics, 1998, 47, 305-309.	2.4	35
113	HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5199-5204.	7.1	880
114	Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor function in heterologous transfectants., 1998, 28, 1280.		1
115	A Common Inhibitory Receptor for Major Histocompatibility Complex Class I Molecules on Human Lymphoid and Myelomonocytic Cells. Journal of Experimental Medicine, 1997, 186, 1809-1818.	8.5	847
116	$\hat{I}^3\hat{I}$ T cell activation or anergy during infections: the role of nonpeptidic TCR ligands and HLA class I molecules. Journal of Leukocyte Biology, 1997, 62, 287-291.	3.3	27
117	The CD94/NKG2C-type lectin receptor complex in recognition of HLA class I molecules. Research in Immunology, 1997, 148, 155-159.	0.9	5
118	Structure and function of the CD94 C-type lectin receptor complex involved in recognition of HLA class I molecules. Immunological Reviews, 1997, 155, 165-174.	6.0	130
119	The CD94/NKG2 C-type lectin receptor complex. Immunologic Research, 1997, 16, 175-185.	2.9	14
120	The human natural killer gene complex is located on chromosome 12p12-p13. Immunogenetics, 1997, 46, 307-311.	2.4	73
121	Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Trends in Immunology, 1997, 18, 89-95.	7.5	708
122	The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules. European Journal of Immunology, 1997, 27, 563-567.	2.9	257
123	Control of self-reactive cytotoxic T lymphocytes expressing $\hat{I}^{\hat{J}}$ T cell receptors by natural killer inhibitory receptors. European Journal of Immunology, 1997, 27, 2812-2821.	2.9	150
124	Functional Resemblance between the Ig-Related NK Cell Receptors Specific for HLA Class I Molecules and the CD94 C-Type Lectin. Chemical Immunology and Allergy, 1996, 64, 116-134.	1.7	3
125	Functional analysis of $\hat{l}\pm 1\hat{l}^21$ integrin in human natural killer cells. European Journal of Immunology, 1996, 26, 2023-2029.	2.9	26
126	Expression and function of $\hat{l}\pm4\hat{l}^2$ 7 integrin on human natural killer cells. Immunology, 1996, 89, 96-104.	4.4	29

#	Article	IF	Citations
127	Tyrosine phosphorylation of a human killer inhibitory receptor recruits protein tyrosine phosphatase 1C Journal of Experimental Medicine, 1996, 184, 93-100.	8.5	202
128	Molecular characterization of human CD94: A type II membrane glycoprotein related to the C-type lectin superfamily. European Journal of Immunology, 1995, 25, 2433-2437.	2.9	210
129	Human natural killer cell receptors for HLA-class I molecules. Evidence that the Kp43 (CD94) molecule functions as receptor for HLA-B alleles Journal of Experimental Medicine, 1994, 180, 545-555.	8.5	204
130	Variability in the expression of a \hat{l}^2 2-microglobulin epitope on hepatocytes in chronic type C hepatitis on treatment with interferon. Hepatology, 1993, 17, 372-382.	7.3	21
131	Signaling through the LFA-1 leucocyte integrin actively regulates intercellular adhesion and tumor necrosis factor-l± production in natural killer cells. European Journal of Immunology, 1993, 23, 1859-1865.	2.9	46
132	Costimulation of cAMP and Protein Kinase C Pathways Inhibits the CD3-Dependent T Cell Activation and Leads to a Persistent Expression of the AP-1 Transcription Factor. Cellular Immunology, 1993, 149, 343-356.	3.0	7
133	Expression of Lymphocyte Activation Surface Antigens in Bronchoalveolar Lavage and Peripheral Blood Cells From Young Healthy Subjects. Chest, 1993, 104, 32-37.	0.8	35
134	Phospholipase D activation in human natural killer cells through the Kp43 and CD16 surface antigens takes place by different mechanisms. Involvement of the phospholipase D pathway in tumor necrosis factor alpha synthesis Journal of Experimental Medicine, 1992, 176, 9-17.	8.5	38
135	Functional analysis of peripheral blood lymphocytes isolated from patients with chronic hepatitis type B. Digestive Diseases and Sciences, 1992, 37, 73-78.	2.3	4
136	Identification of Natural Killer (NK) Cells in Lesions of Human Cutaneous Graft-Versus-Host Disease: Expression of a Novel NK-Associated Surface Antigen (Kp43) in Mononuclear Infiltrates. Journal of Investigative Dermatology, 1991, 97, 659-666.	0.7	34
137	Expression of a novel activation antigen on intrahepatic CD8+ T lymphocytes in viral chronic active hepatitis. Gastroenterology, 1990, 98, 1029-1035.	1.3	84
138	Induction of T cell function via the gp33/27 activation inducer molecule (AIM) requires co-expression of the CD3/TcR complex. European Journal of Immunology, 1989, 19, 959-962.	2.9	15
139	High toxic efficiency of ricin immunotoxins specific for the t-cell antigen receptor of a human leukemia t-cell line. International Journal of Cancer, 1989, 43, 697-702.	5.1	2
140	CD2 is involved in regulating cyclic AMP levels in T cells. European Journal of Immunology, 1988, 18, 961-964.	2.9	25
141	Prostaglandin E2 and the increase of intracellular cAMP inhibit the expression of interleukin 2 receptors in human T cells. European Journal of Immunology, 1988, 18, 1791-1796.	2.9	135
142	Triggering of T cell proliferation through AIM, an activation inducer molecule expressed on activated human lymphocytes Journal of Experimental Medicine, 1988, 168, 1621-1637.	8.5	272
143	Involvement of the CD4 molecule in a post-activation event on T cell proliferation. European Journal of Immunology, 1987, 17, 179-186.	2.9	102
144	Defective interleukin 2 receptor expression is associated with the T cell disfunction subsequent to bone marrow transplantation. European Journal of Immunology, 1987, 17, 1167-1174.	2.9	18

#	Article	IF	CITATIONS
145	An in Vivo Functional Immune System Lacking Polyclonal T-Cell Surface Expression of the CD3/Ti(WT31) Complex. Scandinavian Journal of Immunology, 1987, 26, 699-707.	2.7	19
146	Involvement of T11 molecules in antigen receptormediated T lymphocyte functions: effect of anti-T11 monoclonal antibody on functional capabilities of alloreactive T cell clones. European Journal of Immunology, 1985, 15, 841-844.	2.9	20
147	Selection and characterization of monoclonal antibodies to the idiotype-like structure of an interleukin-2-producing human leukemia t-cell line. International Journal of Cancer, 1985, 36, 253-259.	5.1	27
148	Involvement of T44 molecules in an antigen-independent pathway of T cell activation. Analysis of the correlations to the T cell antigen-receptor complex Journal of Experimental Medicine, 1985, 162, 823-838.	8.5	146
149	Anticlonotypic monoclonal antibodies induce proliferation of clonotype-positive T cells in peripheral blood human T lymphocytes. Evidence for a phenotypic (T4/T8) heterogeneity of the clonotype-positive proliferating cells Journal of Experimental Medicine, 1985, 162, 1393-1398.	8.5	22
150	Interleukin 2 and interferon- \hat{l}^3 are not sufficient to induce natural killer-like activity in human T cell clones. European Journal of Immunology, 1984, 14, 1137-1141.	2.9	5
151	Natural Killer-like Cytotoxicity of Human T-Cell Clones against Various Target Cells. Scandinavian Journal of Immunology, 1983, 17, 95-98.	2.7	12
152	Induction of natural killer-like cytotoxicity in cultured human thymocytes. European Journal of Immunology, 1983, 13, 964-969.	2.9	46
153	Removal of PHA from supernatants containing T-cell growth factor. Journal of Immunological Methods, 1981, 40, 289-296.	1.4	42