Hideyuki Kano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9518346/publications.pdf Version: 2024-02-01

HIDEVILKI KANO

#	Article	IF	CITATIONS
1	Predictors of hearing preservation after stereotactic radiosurgery for acoustic neuroma. Journal of Neurosurgery, 2009, 111, 863-873.	1.6	183
2	T1/T2 Matching to Differentiate Tumor Growth From Radiation Effects After Stereotactic Radiosurgery. Neurosurgery, 2010, 66, 486-492.	1.1	150
3	Stereotactic radiosurgery for arteriovenous malformations, Part 1: management of Spetzler-Martin Grade I and II arteriovenous malformations. Journal of Neurosurgery, 2012, 116, 11-20.	1.6	145
4	Stereotactic radiosurgery for arteriovenous malformations, Part 6: multistaged volumetric management of large arteriovenous malformations. Journal of Neurosurgery, 2012, 116, 54-65.	1.6	141
5	Long-term control of petroclival meningiomas through radiosurgery. Journal of Neurosurgery, 2010, 112, 957-964.	1.6	136
6	Stereotactic radiosurgery for arteriovenous malformations after embolization: a case-control study. Journal of Neurosurgery, 2012, 117, 265-275.	1.6	130
7	The newly diagnosed vestibular schwannoma: radiosurgery, resection, or observation?. Neurosurgical Focus, 2012, 33, E8.	2.3	130
8	Stereotactic Radiosurgery for Chordoma: A Report From the North American Gamma Knife Consortium. Neurosurgery, 2011, 68, 379-389.	1.1	127
9	Stereotactic radiosurgery for cerebral arteriovenous malformations: evaluation of long-term outcomes in a multicenter cohort. Journal of Neurosurgery, 2017, 126, 36-44.	1.6	125
10	Radiosurgery for Cerebral Arteriovenous Malformations in A Randomized Trial of Unruptured Brain Arteriovenous Malformations (ARUBA)-Eligible Patients. Stroke, 2016, 47, 342-349.	2.0	120
11	Stereotactic radiosurgery for symptomatic solitary cerebral cavernous malformations considered high risk for resection. Journal of Neurosurgery, 2010, 113, 23-29.	1.6	114
12	Stereotactic radiosurgery for arteriovenous malformations, Part 3: outcome predictors and risks after repeat radiosurgery. Journal of Neurosurgery, 2012, 116, 21-32.	1.6	108
13	Stereotactic radiosurgery for arteriovenous malformations, Part 2: management of pediatric patients. Journal of Neurosurgery: Pediatrics, 2012, 9, 1-10.	1.3	94
14	Leukoencephalopathy after wholeâ€brain radiation therapy plus radiosurgery versus radiosurgery alone for metastatic lung cancer. Cancer, 2013, 119, 226-232.	4.1	91
15	Using a Machine Learning Approach to Predict Outcomes after Radiosurgery for Cerebral Arteriovenous Malformations. Scientific Reports, 2016, 6, 21161.	3.3	88
16	GAMMA KNIFE RADIOSURGERY IN YOUNGER PATIENTS WITH VESTIBULAR SCHWANNOMAS. Neurosurgery, 2009, 65, 294-301.	1.1	83
17	Stereotactic Radiosurgery for Brainstem Metastases: An International Cooperative Study to Define Response and Toxicity. International Journal of Radiation Oncology Biology Physics, 2016, 96, 280-288.	0.8	83
18	Stereotactic radiosurgery for arteriovenous malformations, Part 4: management of basal ganglia and thalamus arteriovenous malformations. Journal of Neurosurgery, 2012, 116, 33-43.	1.6	81

Ηισεγμκι Κανό

#	Article	IF	CITATIONS
19	Risk of radiation-associated intracranial malignancy after stereotactic radiosurgery: a retrospective, multicentre, cohort study. Lancet Oncology, The, 2019, 20, 159-164.	10.7	80
20	Stereotactic radiosurgery for arteriovenous malformations, Part 5: management of brainstem arteriovenous malformations. Journal of Neurosurgery, 2012, 116, 44-53.	1.6	79
21	Gamma Knife radiosurgery for posterior fossa meningiomas: a multicenter study. Journal of Neurosurgery, 2015, 122, 1479-1489.	1.6	79
22	Estimating the Risks of Adverse Radiation Effects After Gamma Knife Radiosurgery for Arteriovenous Malformations. Stroke, 2017, 48, 84-90.	2.0	76
23	Aneurysms Increase the Risk of Rebleeding After Stereotactic Radiosurgery for Hemorrhagic Arteriovenous Malformations. Stroke, 2012, 43, 2586-2591.	2.0	75
24	International multicenter cohort study of pediatric brain arteriovenous malformations. Part 1: Predictors of hemorrhagic presentation. Journal of Neurosurgery: Pediatrics, 2017, 19, 127-135.	1.3	73
25	Stereotactic Radiosurgery for Cushing Disease: Results of an International, Multicenter Study. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4284-4291.	3.6	72
26	Stereotactic radiosurgery for pilocytic astrocytomas part 2: outcomes in pediatric patients. Journal of Neuro-Oncology, 2009, 95, 219-229.	2.9	70
27	Gamma Knife surgery for the management of glomus tumors: a multicenter study. Journal of Neurosurgery, 2012, 117, 246-254.	1.6	70
28	Stereotactic radiosurgery for the treatment of symptomatic brainstem cavernous malformations. Neurosurgical Focus, 2010, 29, E11.	2.3	68
29	Stereotactic radiosurgery for pilocytic astrocytomas part 1: outcomes in adult patients. Journal of Neuro-Oncology, 2009, 95, 211-218.	2.9	67
30	Stereotactic radiosurgery for intracranial hemangioblastomas: a retrospective international outcome study. Journal of Neurosurgery, 2015, 122, 1469-1478.	1.6	61
31	Stereotactic radiosurgery for pediatric recurrent intracranial ependymomas. Journal of Neurosurgery: Pediatrics, 2010, 6, 417-423.	1.3	58
32	Adjuvant Stereotactic Radiosurgery After Resection of Intracranial Hemangiopericytomas. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1333-1339.	0.8	56
33	Stereotactic radiosurgery for Spetzler-Martin Grade III arteriovenous malformations: an international multicenter study. Journal of Neurosurgery, 2017, 126, 859-871.	1.6	55
34	International multicenter cohort study of pediatric brain arteriovenous malformations. Part 2: Outcomes after stereotactic radiosurgery. Journal of Neurosurgery: Pediatrics, 2017, 19, 136-148.	1.3	55
35	Stereotactic Radiosurgery for Acromegaly: An International Multicenter Retrospective Cohort Study. Neurosurgery, 2019, 84, 717-725.	1.1	54
36	Long term results of primary radiosurgery for vestibular schwannomas. Journal of Neuro-Oncology, 2019, 145, 247-255.	2.9	54

3

#	Article	IF	CITATIONS
37	Does Prior Microsurgery Improve or Worsen the Outcomes of Stereotactic Radiosurgery for Cavernous Sinus Meningiomas?. Neurosurgery, 2013, 73, 401-410.	1.1	53
38	Stereotactic radiosurgery for pituitary metastases. World Neurosurgery, 2009, 72, 248-255.	1.3	52
39	Stereotactic radiosurgery of petroclival meningiomas: a multicenter study. Journal of Neuro-Oncology, 2014, 119, 169-176.	2.9	50
40	Stereotactic Radiosurgery for ARUBA (A Randomized Trial of Unruptured Brain Arteriovenous) Tj ETQq0 0 0 rgBT Study. World Neurosurgery, 2017, 102, 507-517.	/Overlock 1.3	10 Tf 50 627 49
41	Gamma Knife radiosurgery for the management of cerebral metastases from non–small cell lung cancer. Journal of Neurosurgery, 2015, 122, 766-772.	1.6	48
42	Outcome Predictors After Gamma Knife Radiosurgery for Recurrent Trigeminal Neuralgia. Neurosurgery, 2010, 67, 1637-1645.	1.1	47
43	Outcome Predictors of Gamma Knife Radiosurgery for Renal Cell Carcinoma Metastases. Neurosurgery, 2011, 69, 1232-1239.	1.1	47
44	Stereotactic radiosurgery for trigeminal schwannoma: tumor control and functional preservation. Journal of Neurosurgery, 2009, 110, 553-558.	1.6	45
45	Stereotactic radiosurgery for cerebellopontine angle meningiomas. Journal of Neurosurgery, 2014, 120, 708-715.	1.6	45
46	OUTCOME PREDICTORS FOR INTRACRANIAL EPENDYMOMA RADIOSURGERY. Neurosurgery, 2009, 64, 279-288.	1.1	44
47	Stereotactic Radiosurgery for Patients with Trigeminal Neuralgia Associated with Petroclival Meningiomas. Stereotactic and Functional Neurosurgery, 2011, 89, 17-24.	1.5	44
48	Risk of Brain Arteriovenous Malformation Hemorrhage Before and After Stereotactic Radiosurgery. Stroke, 2019, 50, 1384-1391.	2.0	44
49	Skull base chondrosarcoma radiosurgery: report of the North American Gamma Knife Consortium. Journal of Neurosurgery, 2015, 123, 1268-1275.	1.6	43
50	The results of resection after stereotactic radiosurgery for brain metastases. Journal of Neurosurgery, 2009, 111, 825-831.	1.6	42
51	Stereotactic radiosurgery for intractable cluster headache: an initial report from the North American Gamma Knife Consortium. Journal of Neurosurgery, 2011, 114, 1736-1743.	1.6	42
52	Gamma Knife Radiosurgery for Cerebellopontine Angle Meningiomas. Neurosurgery, 2014, 75, 398-408.	1.1	41
53	Radiosurgery for Unruptured Brain Arteriovenous Malformations: An International Multicenter Retrospective Cohort Study. Neurosurgery, 2017, 80, 888-898.	1.1	40
54	Repeat Stereotactic Radiosurgery for Acoustic Neuromas. International Journal of Radiation Oncology Biology Physics, 2010, 76, 520-527.	0.8	39

#	Article	IF	CITATIONS
55	Stereotactic radiosurgery for intracranial chondrosarcoma. Journal of Neuro-Oncology, 2012, 108, 535-542.	2.9	39
56	Stereotactic radiosurgery for idiopathic glossopharyngeal neuralgia: an international multicenter study. Journal of Neurosurgery, 2016, 125, 147-153.	1.6	34
57	Early versus late Gamma Knife radiosurgery following transsphenoidal surgery for nonfunctioning pituitary macroadenomas: a multicenter matched-cohort study. Journal of Neurosurgery, 2018, 129, 648-657.	1.6	34
58	Hypopituitarism after Gamma Knife radiosurgery for pituitary adenomas: a multicenter, international study. Journal of Neurosurgery, 2019, 131, 1188-1196.	1.6	31
59	Epidemiology and Environmental Risk Factors Associated with Vestibular Schwannoma. World Neurosurgery, 2015, 84, 1674-1680.	1.3	30
60	Stereotactic Radiosurgery of Intracranial Chordomas, Chondrosarcomas, and Glomus Tumors. Neurosurgery Clinics of North America, 2013, 24, 553-560.	1.7	29
61	White matter changes in breast cancer brain metastases patients who undergo radiosurgery alone compared to whole brain radiation therapy plus radiosurgery. Journal of Neuro-Oncology, 2015, 121, 583-590.	2.9	29
62	Histology-Stratified Tumor Control and Patient Survival After Stereotactic Radiosurgery for Pineal Region Tumors: A Report From the International Gamma Knife Research Foundation. World Neurosurgery, 2017, 107, 974-982.	1.3	29
63	Stereotactic radiosurgery for jugular foramen schwannomas: an international multicenter study. Journal of Neurosurgery, 2018, 129, 928-936.	1.6	26
64	Stereotactic Radiosurgery for Pediatric Versus Adult Brain Arteriovenous Malformations. Stroke, 2018, 49, 1939-1945.	2.0	26
65	Cranial nerve outcomes after primary stereotactic radiosurgery for symptomatic skull base meningiomas. Journal of Neuro-Oncology, 2018, 139, 341-348.	2.9	25
66	Pathological response of cavernous malformations following radiosurgery. Journal of Neurosurgery, 2015, 123, 938-944.	1.6	24
67	Does radiosurgery have a role in the management of oligodendrogliomas?. Journal of Neurosurgery, 2009, 110, 564-571.	1.6	23
68	Tumor Control and Cranial Nerve Outcomes After Adjuvant Radiosurgery for Low-Grade Skull Base Meningiomas. World Neurosurgery, 2019, 127, e221-e229.	1.3	23
69	Gamma Knife radiosurgery of olfactory groove meningiomas provides a method to preserve subjective olfactory function. Journal of Neuro-Oncology, 2014, 116, 577-583.	2.9	22
70	Technique of Whole-Sellar Stereotactic Radiosurgery for Cushing Disease: Results from a Multicenter, International Cohort Study. World Neurosurgery, 2018, 116, e670-e679.	1.3	22
71	Role of Gamma Knife Radiosurgery in Small Cell Lung Cancer: A Multi-Institutional Retrospective Study of the International Radiosurgery Research Foundation (IRRF). Neurosurgery, 2020, 87, 664-671.	1.1	22
72	The Role of Palliative Radiosurgery When Cancer Invades the Cavernous Sinus. International Journal of Radiation Oncology Biology Physics, 2009, 73, 709-715.	0.8	21

Ηισεγμκι Κανό

#	Article	IF	CITATIONS
73	Stereotactic Radiosurgery after Embolization for Arteriovenous Malformations. Progress in Neurological Surgery, 2013, 27, 89-96.	1.3	21
74	Treatment of WHO Grade 2 Meningiomas With Stereotactic Radiosurgery: Identification of an Optimal Group for SRS Using RPA. International Journal of Radiation Oncology Biology Physics, 2021, 110, 804-814.	0.8	21
75	Gamma knife radiosurgery for uveal melanomas and metastases: a systematic review and meta-analysis. Lancet Oncology, The, 2020, 21, 1526-1536.	10.7	20
76	Dose response and architecture in volume staged radiosurgery for large arteriovenous malformations: A multi-institutional study. Radiotherapy and Oncology, 2020, 144, 180-188.	0.6	19
77	Radiosurgery for Chordoma and Chondrosarcoma. Progress in Neurological Surgery, 2019, 34, 207-214.	1.3	18
78	Stereotactic Radiosurgery for Atypical (World Health Organization II) and Anaplastic (World Health) Tj ETQq0 0 0 Neurosurgery, 2021, 88, 980-988.	rgBT /Ove 1.1	erlock 10 Tf 5 17
79	Stereotactic radiosurgery for sylvian fissure arteriovenous malformations with emphasis on hemorrhage risks and seizure outcomes. Journal of Neurosurgery, 2014, 121, 637-644.	1.6	16
80	Gamma Knife radiosurgery for meningiomas arising from the tentorium: a 22-year experience. Journal of Neuro-Oncology, 2015, 121, 129-134.	2.9	15
81	Stereotactic Radiosurgery for Dural Arteriovenous Fistulas without Cortical Venous Reflux. World Neurosurgery, 2017, 107, 371-375.	1.3	15
82	Upfront Gamma Knife radiosurgery for Cushing's disease and acromegaly: a multicenter, international study. Journal of Neurosurgery, 2019, 131, 532-538.	1.6	15
83	Primary or salvage stereotactic radiosurgery for brain metastatic small cell lung cancer. Journal of Neuro-Oncology, 2019, 144, 217-225.	2.9	14
84	Evaluation of stereotactic radiosurgery for cerebral dural arteriovenous fistulas in a multicenter international consortium. Journal of Neurosurgery, 2020, 132, 114-121.	1.6	14
85	Multistaged Volumetric Management of Large Arteriovenous Malformations. Progress in Neurological Surgery, 2012, 27, 73-80.	1.3	13
86	Stereotactic Radiosurgery for Unruptured Versus Ruptured Pediatric Brain Arteriovenous Malformations. Stroke, 2019, 50, 2745-2751.	2.0	13
87	Reconsidering an important subclass of high-risk dural arteriovenous fistulas for stereotactic radiosurgery. Journal of Neurosurgery, 2019, 130, 972-976.	1.6	13
88	Stereotactic Radiosurgery for Intracranial Ependymomas: An International Multicenter Study. Neurosurgery, 2019, 84, 227-234.	1.1	13
89	Stereotactic radiosurgery for arteriovenous malformations of the basal ganglia and thalamus: an international multicenter study. Journal of Neurosurgery, 2020, 132, 122-131.	1.6	13
90	Stereotactic radiosurgery as the first-line treatment for intracanalicular vestibular schwannomas. Journal of Neurosurgery, 2021, 135, 1051-1057.	1.6	13

#	Article	IF	CITATIONS
91	Primary versus postoperative stereotactic radiosurgery for acromegaly: a multicenter matched cohort study. Journal of Neurosurgery, 2020, 132, 1507-1516.	1.6	13
92	Predicting hearing outcomes before primary radiosurgery for vestibular schwannomas. Journal of Neurosurgery, 2020, 133, 1235-1241.	1.6	13
93	How to improve obliteration rates during volume-staged stereotactic radiosurgery for large arteriovenous malformations. Journal of Neurosurgery, 2019, 130, 1809-1816.	1.6	12
94	Defining Long-Term Clinical Outcomes and Risks of Stereotactic Radiosurgery for Brainstem Cavernous Malformations. World Neurosurgery, 2019, 124, e58-e64.	1.3	12
95	Repeat Stereotactic Radiosurgery for Progressive or Recurrent Vestibular Schwannomas. Neurosurgery, 2019, 85, 535-542.	1.1	12
96	Stereotactic Radiosurgery for Cavernous Sinus Versus Noncavernous Sinus Dural Arteriovenous Fistulas: Outcomes and Outcome Predictors. Neurosurgery, 2020, 86, 676-684.	1.1	12
97	Optimizing stereotactic radiosurgery in patients with recurrent or residual craniopharyngiomas. Journal of Neuro-Oncology, 2021, 154, 113-120.	2.9	12
98	Gamma knife radiosurgery for management of cerebral metastases from esophageal carcinoma. Journal of Neuro-Oncology, 2014, 118, 141-146.	2.9	11
99	Skull Base Chondrosarcoma Radiosurgery. Neurosurgery, 2014, 61, 155-158.	1.1	11
100	Seizure Presentation in Patients with Brain Arteriovenous Malformations Treated with Stereotactic Radiosurgery: A Multicenter Study. World Neurosurgery, 2019, 126, e634-e640.	1.3	11
101	Outcomes of stereotactic radiosurgery for pilocytic astrocytoma: an international multiinstitutional study. Journal of Neurosurgery, 2021, 134, 162-170.	1.6	11
102	The benefit and risk of stereotactic radiosurgery for prolactinomas: an international multicenter cohort study. Journal of Neurosurgery, 2020, 133, 717-726.	1.6	11
103	Repeat stereotactic radiosurgery for Cushing's disease: outcomes of an international, multicenter study. Journal of Neuro-Oncology, 2018, 138, 519-525.	2.9	10
104	Salvage Stereotactic Radiosurgery in Breast Cancer Patients with Multiple Brain Metastases. World Neurosurgery, 2019, 125, e479-e486.	1.3	10
105	Early versus late Gamma Knife radiosurgery for Cushing's disease after prior resection: results of an international, multicenter study. Journal of Neurosurgery, 2021, 134, 807-815.	1.6	9
106	Dose to neuroanatomical structures surrounding pituitary adenomas and the effect of stereotactic radiosurgery on neuroendocrine function: an international multicenter study. Journal of Neurosurgery, 2022, 136, 813-821.	1.6	9
107	Hemorrhage risk of cerebral dural arteriovenous fistulas following Gamma Knife radiosurgery in a multicenter international consortium. Journal of Neurosurgery, 2020, 132, 1209-1217.	1.6	9
108	Effect of Advanced Age on Stereotactic Radiosurgery Outcomes for Brain Arteriovenous Malformations: A Multicenter Matched Cohort Study. World Neurosurgery, 2018, 119, e429-e440.	1.3	8

#	Article	IF	CITATIONS
109	A Proposed Grading Scale for Predicting Outcomes After Stereotactic Radiosurgery for Dural Arteriovenous Fistulas. Neurosurgery, 2020, 87, 247-255.	1.1	8
110	Effect of Prior Embolization on Outcomes After Stereotactic Radiosurgery for Pediatric Brain Arteriovenous Malformations: An International Multicenter Study. Neurosurgery, 2021, 89, 672-679.	1.1	8
111	Radiosurgery for Central Neurocytoma. Progress in Neurological Surgery, 2019, 34, 232-237.	1.3	7
112	Effect of Anatomic Segment Involvement on Stereotactic Radiosurgery for Facial Nerve Schwannomas: An International Multicenter Cohort Study. Neurosurgery, 2021, 88, E91-E98.	1.1	7
113	Stereotactic radiosurgery for pediatric brain arteriovenous malformations: long-term outcomes. Journal of Neurosurgery: Pediatrics, 2020, 25, 497-505.	1.3	7
114	A Propensity Score–Matched Cohort Analysis of Outcomes After Stereotactic Radiosurgery in Older versus Younger Patients with Dural Arteriovenous Fistula: An International Multicenter Study. World Neurosurgery, 2019, 125, e1114-e1124.	1.3	6
115	Useful hearing preservation is improved in vestibular schwannoma patients who undergo stereotactic radiosurgery before further hearing deterioration ensues. Journal of Neuro-Oncology, 2021, 152, 559-566.	2.9	6
116	Gamma Knife radiosurgery for the treatment of Nelson's syndrome: a multicenter, international study. Journal of Neurosurgery, 2020, 133, 336-341.	1.6	6
117	Differentiating radiation effect from tumor progression after stereotactic radiosurgery: T1/T2 matching. Clinical Neurosurgery, 2010, 57, 160-5.	0.2	6
118	Gamma Knife Stereotactic Radiosurgery in the Management of Cluster Headache. Current Pain and Headache Reports, 2011, 15, 118-123.	2.9	5
119	Safety and efficacy of repeat radiosurgery for acromegaly: an International Multi-Institutional Study. Journal of Neuro-Oncology, 2019, 145, 301-307.	2.9	5
120	Leksell Radiosurgery for the 3 H Tumors: Hemangiomas, Hemangioblastomas, and Hemangiopericytomas. Progress in Neurological Surgery, 2019, 34, 223-231.	1.3	5
121	Leksell Stereotactic Radiosurgery for Cavernous Malformations. Progress in Neurological Surgery, 2019, 34, 260-266.	1.3	5
122	Long-term outcomes of pediatric arteriovenous malformations: the 30-year Pittsburgh experience. Journal of Neurosurgery: Pediatrics, 2020, 26, 275-282.	1.3	5
123	Earlier radiosurgery leads to better pain relief and less medication usage for trigeminal neuralgia patients: an international multicenter study. Journal of Neurosurgery, 2020, 135, 237-244.	1.6	5
124	Early obliteration of pediatric brain arteriovenous malformations after stereotactic radiosurgery: an international multicenter study. Journal of Neurosurgery: Pediatrics, 2020, 26, 398-405.	1.3	5
125	Hemorrhage and Recurrence of Obliterated Brain Arteriovenous Malformations Treated With Stereotactic Radiosurgery. Stroke, 2022, 53, .	2.0	5
126	Moyamoya Disease Showing Atypical Angiographic Findings —Two Case Reports—. Neurologia Medico-Chirurgica, 1999, 39, 294-298.	2.2	4

Ηισεγμκι Κανό

#	Article	IF	CITATIONS
127	Clinical and Imaging Response to Trigeminal Schwannoma Radiosurgery: A Retrospective Analysis of a 28-Year Experience. Journal of Neurological Surgery, Part B: Skull Base, 2020, 82, 491-499.	0.8	4
128	Radiosurgery for Unruptured Intervention-NaÃ⁻ve Pediatric Brain Arteriovenous Malformations. Neurosurgery, 2020, 87, 368-376.	1.1	4
129	Stereotactic radiosurgery for treatment of radiation-induced meningiomas: a multiinstitutional study. Journal of Neurosurgery, 2021, 135, 862-870.	1.6	4
130	Stereotactic Radiosurgery for Choroid Plexus Tumors: A Report of the International Radiosurgery Research Foundation. Neurosurgery, 2021, 88, 791-796.	1.1	4
131	Radiosurgery for Desmoplastic Melanoma of the Head and Neck Using the Leksell Gamma Knife Perfexion Technology. Stereotactic and Functional Neurosurgery, 2009, 87, 61-65.	1.5	3
132	CT versus MR Imaging in Estimating Cochlear Radiation Dose during Gamma Knife Surgery for Vestibular Schwannomas. American Journal of Neuroradiology, 2018, 39, 1907-1911.	2.4	3
133	Leksell Radiosurgery for Ependymomas and Oligodendrogliomas. Progress in Neurological Surgery, 2019, 34, 200-206.	1.3	3
134	Salvage Leksell Stereotactic Radiosurgery for Malignant Gliomas. Progress in Neurological Surgery, 2019, 34, 191-199.	1.3	3
135	Whole Sella vs Targeted Stereotactic Radiosurgery for Acromegaly: A Multicenter Matched Cohort Study. Neurosurgery, 2020, 86, 656-664.	1.1	3
136	Clinico-Radiologic Outcomes After Stereotactic Radiosurgery for Patients with Complex High-Risk Multiple Arteriovenous Malformations. World Neurosurgery, 2020, 144, e244-e252.	1.3	3
137	RONC-10. OUTCOMES OF STEREOTACTIC RADIOSURGERY FOR PILOCYTIC ASTROCYTOMA: AN INTERNATIONAL MULTICENTER STUDY. Neuro-Oncology, 2018, 20, i176-i176.	1.2	0
138	Vascular Malformation. , 2018, , 487-497.		0
139	Stereotactic Radiosurgery for Cushing's Disease: Results of an International, Multicenter Study. Journal of Neurological Surgery, Part B: Skull Base, 2018, 79, S1-S188.	0.8	0