Yunju Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9517621/publications.pdf

Version: 2024-02-01

840776 1058476 14 821 11 14 citations h-index g-index papers 14 14 14 638 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Developments in FTâ€ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics. Mass Spectrometry Reviews, 2015, 34, 248-263.	5.4	184
2	Application of Saturates, Aromatics, Resins, and Asphaltenes Crude Oil Fractionation for Detailed Chemical Characterization of Heavy Crude Oils by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Equipped with Atmospheric Pressure Photoionization. Energy & Energy & 2012, 26, 2558-2565.	5.1	149
3	Planar Limit-Assisted Structural Interpretation of Saturates/Aromatics/Resins/Asphaltenes Fractionated Crude Oil Compounds Observed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2011, 83, 6068-6073.	6.5	129
4	Characterization of Crude Oils at the Molecular Level by Use of Laser Desorption Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2012, 84, 8587-8594.	6.5	79
5	Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level. Energy &	5.1	63
6	Application of Atmospheric Pressure Photo Ionization Hydrogen/Deuterium Exchange High-Resolution Mass Spectrometry for the Molecular Level Speciation of Nitrogen Compounds in Heavy Crude Oils. Analytical Chemistry, 2013, 85, 9758-9763.	6.5	56
7	Development and Application of a Software Tool for the Interpretation of Organic Mixtures' Spectra - Hydrogen Deuterium Exchange (STORM-HDX) to Interpret APPI HDX MS Spectra. Bulletin of the Korean Chemical Society, 2014, 35, 749-752.	1.9	41
8	Evaluation of Laser Desorption Ionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Study Metalloporphyrin Complexes. Energy & Energy & 2014, 28, 6699-6706.	5.1	38
9	Application of Phase Correction to Improve the Interpretation of Crude Oil Spectra Obtained Using 7ÂT Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2014, 25, 154-157.	2.8	25
10	Extension of the Analytical Window for Characterizing Aromatic Compounds in Oils Using a Comprehensive Suite of High-Resolution Mass Spectrometry Techniques and Double Bond Equivalence versus Carbon Number Plot. Energy & Energy & 2017, 31, 7874-7883.	5.1	23
11	Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation. Journal of Chromatography A, 2016, 1444, 123-128.	3.7	12
12	Characterization and Structural Classification of Heteroatom Components of Vacuum-Residue-Derived Asphaltenes Using APPI (+) FT-ICR Mass Spectrometry. Energy & Energ	5.1	8
13	Molecular-Level Structural Analysis of Hydrotreated and Untreated Atmospheric Residue Oils via Atmospheric Pressure Photoionization Cyclic Ion Mobility Mass Spectrometry and Ultrahigh-Resolution Mass Spectrometry. Energy & Spectrometry. 25, 18163-18169.	5.1	8
14	Molecular Level Investigation of Oil Sludge at the Bottom of Oil Tank in Ratawi Oil Field by Atmospheric Pressure Photo Ionization Ultrahighâ€resolution Mass Spectrometry. Bulletin of the Korean Chemical Society, 2020, 41, 450-453.	1.9	6