Lynne Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9517409/publications.pdf

Version: 2024-02-01

159585 233421 3,790 48 30 45 citations g-index h-index papers 50 50 50 6027 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Origin of myofibroblasts in the fibrotic liver in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3297-305.	7.1	414
2	TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P. International Journal of Biochemistry and Cell Biology, 2011, 43, 154-162.	2.8	315
3	The Role of CCL12 in the Recruitment of Fibrocytes and Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 175-181.	2.9	295
4	Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Laboratory Investigation, 2010, 90, 812-823.	3.7	212
5	Serum Amyloid P Therapeutically Attenuates Murine Bleomycin-Induced Pulmonary Fibrosis via Its Effects on Macrophages. PLoS ONE, 2010, 5, e9683.	2.5	173
6	The Role of the Th2 CC Chemokine Ligand CCL17 in Pulmonary Fibrosis. Journal of Immunology, 2004, 173, 4692-4698.	0.8	160
7	CXCL11 Attenuates Bleomycin-induced Pulmonary Fibrosis via Inhibition of Vascular Remodeling. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 261-268.	5.6	155
8	Long-term activation of TLR3 by Poly(I:C) induces inflammation and impairs lung function in mice. Respiratory Research, 2009, 10, 43.	3.6	147
9	CXCR2 Is Critical to Hyperoxia-Induced Lung Injury. Journal of Immunology, 2004, 172, 3860-3868.	0.8	139
10	Hyper-responsiveness of IPF/UIP fibroblasts: Interplay between TGF \hat{I}^2 1, IL-13 and CCL2. International Journal of Biochemistry and Cell Biology, 2008, 40, 2174-2182.	2.8	134
11	A Micro RNA Processing Defect in Rapidly Progressing Idiopathic Pulmonary Fibrosis. PLoS ONE, 2011, 6, e21253.	2.5	119
12	Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore–induced allergic airway disease. Journal of Allergy and Clinical Immunology, 2010, 126, 712-721.e7.	2.9	114
13	Semaphorin 7a ⁺ Regulatory T Cells Are Associated with Progressive Idiopathic Pulmonary Fibrosis and Are Implicated in Transforming Growth Factor-β1–induced Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 180-188.	5.6	106
14	Targeting Interleukin-13 with Tralokinumab Attenuates Lung Fibrosis and Epithelial Damage in a Humanized SCID Idiopathic Pulmonary Fibrosis Model. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 985-994.	2.9	105
15	Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. Fibrogenesis and Tissue Repair, 2013, 6, 20.	3.4	88
16	Selective Targeting of TGF-Î ² Activation to Treat Fibroinflammatory Airway Disease. Science Translational Medicine, 2014, 6, 241ra79.	12.4	79
17	Deleterious Role of TLR3 during Hyperoxia-induced Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1227-1237.	5.6	69
18	Proteinase-Activated Receptor-1, CCL2, and CCL7 Regulate Acute Neutrophilic Lung Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 144-157.	2.9	68

#	Article	IF	CITATIONS
19	Smoking and Idiopathic Pulmonary Fibrosis. Pulmonary Medicine, 2012, 2012, 1-13.	1.9	67
20	Danger-Associated Molecular Patterns and Danger Signals in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 163-168.	2.9	66
21	Targeting of TAM Receptors Ameliorates Fibrotic Mechanisms in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1443-1456.	5.6	66
22	Human Lung Parenchyma but Not Proximal Bronchi Produces Fibroblasts with Enhanced TGF- \hat{l}^2 Signaling and $\hat{l}\pm$ -SMA Expression. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 641-651.	2.9	59
23	Chemokine (C-C motif) ligand 2 mediates direct and indirect fibrotic responses in human and murine cultured fibrocytes. Fibrogenesis and Tissue Repair, 2011, 4, 23.	3.4	57
24	BMP-7 Does Not Protect against Bleomycin-Induced Lung or Skin Fibrosis. PLoS ONE, 2008, 3, e4039.	2.5	52
25	Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight, 2017, 2, .	5.0	51
26	Long Non-coding RNAs Are Central Regulators of the IL- $1\hat{l}^2$ -Induced Inflammatory Response in Normal and Idiopathic Pulmonary Lung Fibroblasts. Frontiers in Immunology, 2018, 9, 2906.	4.8	47
27	Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) Modulates Immune Responses to <i>Aspergillus fumigatus</i> During Fungal Asthma in Mice. Immunological Investigations, 2011, 40, 692-722.	2.0	43
28	Local apoptosis promotes collagen production by monocyte-derived cells in transforming growth factor [21-induced lung fibrosis. Fibrogenesis and Tissue Repair, 2011, 4, 12.	3.4	39
29	Serum amyloid P ameliorates radiation-induced oral mucositis and fibrosis. Fibrogenesis and Tissue Repair, 2010, 3, 11.	3.4	37
30	The Role of CXCR2/CXCR2 Ligands in Acute Lung Injury. Inflammation and Allergy: Drug Targets, 2005, 4, 299-303.	3.1	33
31	Carboxylic acid bioisosteres acylsulfonamides, acylsulfamides, and sulfonylureas as novel antagonists of the CXCR2 receptor. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1926-1930.	2.2	30
32	Targeting Alveolar Repair in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 347-365.	2.9	29
33	Divergent roles for Clusterin in Lung Injury and Repair. Scientific Reports, 2017, 7, 15444.	3.3	28
34	Identification of a missense variant in SPDL1 associated with idiopathic pulmonary fibrosis. Communications Biology, 2021, 4, 392.	4.4	28
35	Interstitial lung disease. Current Opinion in Rheumatology, 2012, 24, 656-662.	4.3	26
36	Epigenetic Mechanisms through which Toll-like Receptor–9 Drives Idiopathic Pulmonary Fibrosis Progression. Proceedings of the American Thoracic Society, 2012, 9, 172-176.	3.5	24

#	Article	IF	CITATIONS
37	Acute cigarette smoke exposure activates apoptotic and inflammatory programs but a second stimulus is required to induce epithelial to mesenchymal transition in COPD epithelium. Respiratory Research, 2017, 18, 82.	3.6	24
38	Inhibition of mast cells: a novel mechanism by which nintedanib may elicit anti-fibrotic effects. Thorax, 2020, 75, 754-763.	5.6	24
39	TGF- $\hat{l}^2\hat{a}$ CPependent Dendritic Cell Chemokinesis in Murine Models of Airway Disease. Journal of Immunology, 2015, 195, 1182-1190.	0.8	18
40	Commonalities between the pro-fibrotic mechanisms in COPD and IPF. Pulmonary Pharmacology and Therapeutics, 2012, 25, 276-280.	2.6	14
41	Identification of periplakin as a major regulator of lung injury and repair in mice. JCI Insight, 2018, 3, .	5. 0	13
42	Generation of bleomycin-induced lung fibrosis is independent of IL-16. Cytokine, 2009, 46, 17-23.	3.2	7
43	Use of biologics to treat acute exacerbations and manage disease in asthma, COPD and IPF. , 2017, 169, 1-12.		7
44	Editorial: The Cell Types of Fibrosis. Frontiers in Pharmacology, 2016, 6, 311.	3.5	6
45	Translational medicine approaches to the study of pulmonary diseases. Pulmonary Pharmacology and Therapeutics, 2011, 24, 185-186.	2.6	1
46	Living with Fibrosis: From Diagnosis to Future Hope. Frontiers in Pharmacology, 2015, 6, 288.	3.5	1
47	The TGF-β inhibitory activity of antibody 37E1B5 depends on its H-CDR2 glycan. MAbs, 2017, 9, 104-113.	5.2	0
48	Recombinant Protein Based Therapeutics for IPF. Inflammation and Allergy: Drug Targets, 2013, 12, 109-123.	1.8	0