
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9517120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11, 1424-1439.	9.5	2,778
2	Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 2007, 143, 123-145.	4.8	509
3	Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Clobal Change Biology, 2007, 13, 634-651.	9.5	486
4	Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 2004, 123, 159-176.	4.8	420
5	Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature, 2012, 487, 472-476.	27.8	369
6	Evaluation of forest snow processes models (SnowMIP2). Journal of Geophysical Research, 2009, 114, .	3.3	290
7	Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiology, 2012, 32, 776-798.	3.1	223
8	Carbon balance of different aged Scots pine forests in Southern Finland. Global Change Biology, 2004, 10, 1106-1119.	9.5	161
9	Effect of thinning on surface fluxes in a boreal forest. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	157
10	Forest floor vegetation plays an important role in photosynthetic production of boreal forests. Forest Ecology and Management, 2006, 221, 241-248.	3.2	154
11	Comparison of static chambers to measure CH4 emissions from soils. Agricultural and Forest Meteorology, 2013, 171-172, 124-136.	4.8	152
12	On the multiâ€ŧemporal correlation between photosynthesis and soil CO ₂ efflux: reconciling lags and observations. New Phytologist, 2011, 191, 1006-1017.	7.3	128
13	Looking deeper into the soil: biophysical controls and seasonal lags of soil CO ₂ production and efflux. Ecological Applications, 2010, 20, 1569-1582.	3.8	120
14	Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence. Applied and Environmental Microbiology, 2015, 81, 7869-7880.	3.1	119
15	Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn. Agricultural and Forest Meteorology, 2011, 151, 682-691.	4.8	118
16	Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiology, 2006, 26, 749-757.	3.1	117
17	Relative Humidity Effect on the High-Frequency Attenuation of Water Vapor Flux Measured by a Closed-Path Eddy Covariance System. Journal of Atmospheric and Oceanic Technology, 2009, 26, 1856-1866.	1.3	108
18	Long-term direct CO ₂ flux measurements over a boreal lake: Five years of eddy covariance data. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	104

#	Article	IF	CITATIONS
19	Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Scientific Reports, 2016, 6, 23410.	3.3	99
20	Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine. Atmospheric Environment, 2010, 44, 3651-3659.	4.1	95
21	A Processâ€Based Model for Predicting Soil Carbon Dioxide Efflux and Concentration. Soil Science Society of America Journal, 2003, 67, 402-413.	2.2	92
22	Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 458-469.	1.6	92
23	Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance. Tree Physiology, 2008, 28, 265-276.	3.1	92
24	Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements. Agricultural and Forest Meteorology, 2018, 249, 434-443.	4.8	89
25	Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions. Nature Geoscience, 2021, 14, 289-294.	12.9	76
26	Effects of cooling and internal wave motions on gas transfer coefficients in a boreal lake. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 22827.	1.6	74
27	Respiration in Boreal Forest Soil as Determined from Carbon Dioxide Concentration Profile. Soil Science Society of America Journal, 2008, 72, 1187-1196.	2.2	73
28	Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures. Soil Biology and Biochemistry, 2015, 91, 1-13.	8.8	70
29	Seasonal patterns of soil CO2 efflux and soil air CO2 concentration in a Scots pine forest: comparison of two chamber techniques. Global Change Biology, 2003, 9, 371-382.	9.5	68
30	Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. Agricultural and Forest Meteorology, 2014, 188, 33-44.	4.8	67
31	Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1296-1314.	3.0	64
32	Carbon balance and allocation of assimilated CO2 in Scots pine, Norway spruce, and Silver birch seedlings determined with gas exchange measurements and 14C pulse labelling. Trees - Structure and Function, 2009, 23, 611-621.	1.9	61
33	Continuous VOC flux measurements on boreal forest floor. Plant and Soil, 2013, 369, 241-256.	3.7	59
34	Autumn temperature and carbon balance of a boreal Scots pine forest in Southern Finland. Biogeosciences, 2010, 7, 163-176.	3.3	57
35	Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics, 2016, 16, 14421-14461.	4.9	57
36	Priming effect increases with depth in a boreal forest soil. Soil Biology and Biochemistry, 2016, 99, 104-107.	8.8	56

#	Article	IF	CITATIONS
37	Stimulation of soil organic nitrogen pool: The effect of plant and soil organic matter degrading enzymes. Soil Biology and Biochemistry, 2016, 96, 97-106.	8.8	56
38	Nitrogen balance of a boreal Scots pine forest. Biogeosciences, 2013, 10, 1083-1095.	3.3	55
39	Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. Geoderma, 2014, 235-236, 74-82.	5.1	55
40	Winter ecology of a subalpine grassland: Effects of snow removal on soil respiration, microbial structure and function. Science of the Total Environment, 2017, 590-591, 316-324.	8.0	54
41	Contrasting CO ₂ concentration discharge dynamics in headwater streams: A multiâ€catchment comparison. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 445-461.	3.0	53
42	Soil organic carbon stock and chemical composition along an altitude gradient in the Lushan Mountain, subtropical China. Ecological Research, 2014, 29, 433-439.	1.5	50
43	Effects of biochar on carbon and nitrogen fluxes in boreal forest soil. Plant and Soil, 2018, 425, 71-85.	3.7	46
44	Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales—review and recommendations. Environmental Monitoring and Assessment, 2016, 188, 630.	2.7	45
45	Determining the contribution of vertical advection to the net ecosystem exchange at Hyytiäorest, Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 900.	1.6	44
46	Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. Journal of Environmental Management, 2018, 228, 405-415.	7.8	44
47	H2O and CO2fluxes at the floor of a boreal pine forest. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, 167-178.	1.6	43
48	Highâ€frequency measurements of productivity of planktonic algae using rugged nondispersive infrared carbon dioxide probes. Limnology and Oceanography: Methods, 2008, 6, 347-354.	2.0	41
49	Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada. Science of the Total Environment, 2017, 601-602, 895-905.	8.0	41
50	Applicability of the soil gradient method for estimating soil–atmosphere CO ₂ , CH ₄ , and N ₂ O fluxes for steppe soils in Inner Mongolia. Journal of Plant Nutrition and Soil Science, 2011, 174, 359-372.	1.9	38
51	Bacterial community structure and function shift across a northern boreal forest fire chronosequence. Scientific Reports, 2016, 6, 32411.	3.3	37
52	The impact of wildfire on microbial C:N:P stoichiometry and the fungal-to-bacterial ratio in permafrost soil. Biogeochemistry, 2019, 142, 1-17.	3.5	37
53	An underestimated role of precipitation frequency in regulating summer soil moisture. Environmental Research Letters, 2012, 7, 024011.	5.2	34
54	The long-term impact of low-intensity surface fires on litter decomposition and enzyme activities in boreal coniferous forests. International Journal of Wildland Fire, 2016, 25, 213.	2.4	34

#	Article	IF	CITATIONS
55	Effects of prolonged drought stress on Scots pine seedling carbon allocation. Tree Physiology, 2017, 37, 418-427.	3.1	33
56	The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data, 2020, 12, 1295-1320.	9.9	33
57	An open chamber system for measuring soil surface CO2efflux: Analysis of error sources related to the chamber system. Journal of Geophysical Research, 2001, 106, 7985-7992.	3.3	32
58	Effects of Grazing on the Vegetation Structure and Carbon Dioxide Exchange of a Fennoscandian Fell Ecosystem. Arctic, Antarctic, and Alpine Research, 2008, 40, 422-431.	1.1	32
59	Evidences on the Ability of Mycorrhizal Genus Piloderma to Use Organic Nitrogen and Deliver It to Scots Pine. PLoS ONE, 2015, 10, e0131561.	2.5	30
60	The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings. Tree Physiology, 2012, 32, 724-736.	3.1	29
61	Inter- and intra-annual variations in canopy fine litterfall and carbon and nitrogen inputs to the forest floor in two European coniferous forests. Annals of Forest Science, 2013, 70, 367-379.	2.0	29
62	Precipitation and net ecosystem exchange are the most important drivers of DOC flux in upland boreal catchments. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1861-1878.	3.0	27
63	Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region. Journal of Environmental Management, 2019, 241, 637-644.	7.8	27
64	Carbon partitioning in ectomycorrhizal Scots pine seedlings. Soil Biology and Biochemistry, 2010, 42, 1614-1623.	8.8	26
65	Inter- and intra-annual dynamics of photosynthesis differ between forest floor vegetation and tree canopy in a subarctic Scots pine stand. Agricultural and Forest Meteorology, 2019, 271, 1-11.	4.8	26
66	Comparison of soil CO2 flux between uncleared and cleared windthrow areas in Estonia and Latvia. Forest Ecology and Management, 2011, 262, 65-70.	3.2	25
67	A Process-Based Model for Predicting Soil Carbon Dioxide Efflux and Concentration. Soil Science Society of America Journal, 2003, 67, 402.	2.2	25
68	Ectomycorrhizal fungi affect Scots pine photosynthesis through nitrogen and water economy, not only through increased carbon demand. Environmental and Experimental Botany, 2015, 109, 103-112.	4.2	24
69	Beavers affect carbon biogeochemistry: both shortâ€ŧerm and longâ€ŧerm processes are involved. Mammal Review, 2018, 48, 298-311.	4.8	24
70	Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry, 2019, 143, 257-274.	3.5	24
71	Biochar as adsorbent in purification of clear-cut forest runoff water: adsorption rate and adsorption capacity. Biochar, 2020, 2, 227-237.	12.6	24
72	Archaeal Communities in Boreal Forest Tree Rhizospheres Respond to Changing Soil Temperatures. Microbial Ecology, 2011, 62, 205-217.	2.8	23

#	Article	IF	CITATIONS
73	Contrasting effects of increased carbon input on boreal SOM decomposition with and without presence of living root system of Pinus sylvestris L Plant and Soil, 2014, 377, 145-158.	3.7	23
74	Boreal forest soil is a significant and diverse source of volatile organic compounds. Plant and Soil, 2019, 441, 89-110.	3.7	23
75	Wildfire effects on soil bacterial community and its potential functions in a permafrost region of Canada. Applied Soil Ecology, 2020, 156, 103713.	4.3	23
76	Impacts of wildfire on soil microbiome in Boreal environments. Current Opinion in Environmental Science and Health, 2021, 22, 100258.	4.1	23
77	Long-term effects of forest fires on soil greenhouse gas emissions and extracellular enzyme activities in a hemiboreal forest. Science of the Total Environment, 2020, 718, 135291.	8.0	22
78	Changes in very fine root respiration and morphology with time since last fire in a boreal forest. Plant and Soil, 2016, 402, 303-316.	3.7	21
79	Photosynthetic production of ground vegetation in different-aged Scots pine (<i>Pinus sylvestris</i>) forests. Canadian Journal of Forest Research, 2011, 41, 2020-2030.	1.7	20
80	Photosynthesis of ground vegetation in different aged pine forests: Effect of environmental factors predicted with a process-based model. Journal of Vegetation Science, 2011, 22, 96-110.	2.2	20
81	Carbon dioxide, methane and nitrous oxide fluxes from podzols of a fire chronosequence in the boreal forests in V¤iö, Finnish Lapland. Geoderma Regional, 2015, 5, 181-187.	2.1	20
82	Reindeer grazing alter soil fungal community structure and litter decomposition related enzyme activities in boreal coniferous forests in Finnish Lapland. Applied Soil Ecology, 2018, 132, 74-82.	4.3	20
83	Biochar amendment increases tree growth in nutrient-poor, young Scots pine stands in Finland. Forest Ecology and Management, 2020, 474, 118362.	3.2	20
84	Rain Induced Changes in Carbon Dioxide Concentrations in the Soil–Lake–Brook Continuum of a Boreal Forested Catchment. Vadose Zone Journal, 2012, 11, vzj2011.0039.	2.2	19
85	Efficient gas exchange between a boreal river and the atmosphere. Geophysical Research Letters, 2013, 40, 5683-5686.	4.0	19
86	Influences of Reindeer Grazing on Above- and Belowground Biomass and Soil Carbon Dynamics. Arctic, Antarctic, and Alpine Research, 2015, 47, 495-503.	1.1	19
87	Decadal‣cale Recovery of Carbon Stocks After Wildfires Throughout the Boreal Forests. Global Biogeochemical Cycles, 2020, 34, e2020GB006612.	4.9	19
88	North American boreal forests are a large carbon source due to wildfires from 1986 to 2016. Scientific Reports, 2021, 11, 7723.	3.3	19
89	Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions. Scientific Reports, 2017, 7, 3108.	3.3	18
90	CH4 oxidation in a boreal lake during the development of hypolimnetic hypoxia. Aquatic Sciences, 2020, 82, 19.	1.5	18

#	Article	IF	CITATIONS
91	Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia. Science of the Total Environment, 2020, 711, 134851.	8.0	18
92	Field measurements of soil respiration: principles and constraints, potentials and limitations of different methods. , 2010, , 16-33.		17
93	Prescribed burning of logging slash in the boreal forest of Finland: emissions and effects on meteorological quantities and soil properties. Atmospheric Chemistry and Physics, 2014, 14, 4473-4502.	4.9	17
94	A multisite analysis of temporal random errors in soil CO ₂ efflux. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 737-751.	3.0	17
95	Studying the impact of living roots on the decomposition of soil organic matter in two different forestry-drained peatlands. Plant and Soil, 2015, 396, 59-72.	3.7	17
96	How Time since Forest Fire Affects Stand Structure, Soil Physical-Chemical Properties and Soil CO2 Efflux in Hemiboreal Scots Pine Forest Fire Chronosequence?. Forests, 2016, 7, 201.	2.1	17
97	137Cs distributions in soil and trees in forest ecosystems after the radioactive fallout – Comparison study between southern Finland and Fukushima, Japan. Journal of Environmental Radioactivity, 2016, 161, 73-81.	1.7	17
98	Overlooked organic vapor emissions from thawing Arctic permafrost. Environmental Research Letters, 2020, 15, 104097.	5.2	17
99	Medium-term dynamics of soil respiration in a Mediterranean mountain ecosystem: The effects of burn severity, post-fire burnt-wood management, and slope-aspect. Agricultural and Forest Meteorology, 2017, 233, 195-208.	4.8	16
100	Spatio-temporal variability and controls of soil respiration in a furrow-irrigated vineyard. Soil and Tillage Research, 2020, 196, 104424.	5.6	16
101	Soil Fungal Community Structure in Boreal Pine Forests: From Southern to Subarctic Areas of Finland. Frontiers in Microbiology, 2021, 12, 653896.	3.5	16
102	High carbon losses from established growing sites delay the carbon sequestration benefits of street tree plantings – A case study in Helsinki, Finland. Urban Forestry and Urban Greening, 2017, 26, 85-94.	5.3	15
103	Nitrogen balance along a northern boreal forest fire chronosequence. PLoS ONE, 2017, 12, e0174720.	2.5	15
104	Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest. Biogeosciences, 2012, 9, 2033-2044.	3.3	14
105	Water quality and the biodegradability of dissolved organic carbon in drained boreal peatland under different forest harvesting intensities. Science of the Total Environment, 2022, 806, 150919.	8.0	14
106	Photosynthesis of boreal ground vegetation after a forest clear-cut. Biogeosciences, 2009, 6, 2495-2507.	3.3	13
107	Concentrations and quality of DOC along the terrestrial–aquatic continuum in a boreal forested catchment. Freshwater Science, 2015, 34, 440-455.	1.8	13
108	Purification of Forest Clear-Cut Runoff Water Using Biochar: A Meso-Scale Laboratory Column Experiment. Water (Switzerland), 2020, 12, 478.	2.7	13

#	Article	IF	CITATIONS
109	Biochar use in global forests: opportunities and challenges. Developments in Soil Science, 2019, , 427-453.	0.5	12
110	Contrasting effects of reindeer grazing on CO ₂ , CH ₄ , and N ₂ O fluxes originating from the northern boreal forest floor. Land Degradation and Development, 2018, 29, 374-381.	3.9	11
111	Partitioning of forest floor CO2 emissions reveals the belowground interactions between different plant groups in a Scots pine stand in southern Finland. Agricultural and Forest Meteorology, 2021, 297, 108266.	4.8	11
112	Linkages between soil carbon, soil fertility and nitrogen fixation in <i>Acacia senegal</i> plantations of varying age in Sudan. PeerJ, 2018, 6, e5232.	2.0	10
113	CH ₄ and N ₂ O dynamics in the boreal forest–mire ecotone. Biogeosciences, 2015, 12, 281-297.	3.3	9
114	Modeling nonlinear responses of DOC transport in boreal catchments in Sweden. Water Resources Research, 2016, 52, 4970-4989.	4.2	9
115	Assessment of a portable UV–Vis spectrophotometer's performance for stream water DOC and Fe content monitoring in remote areas. Talanta, 2021, 224, 121919.	5.5	9
116	Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 2022, 22, 4413-4469.	4.9	9
117	New decomposition rate functions based on volumetric soil water content for the ROMUL soil organic matter dynamics model. Ecological Modelling, 2013, 263, 109-118.	2.5	8
118	The effect of roots and easily available carbon on the decomposition of soil organic matter fractions in boreal forest soil. European Journal of Soil Science, 2017, 68, 537-546.	3.9	8
119	Short-term effects of biochar on soil CO2 efflux in boreal Scots pine forests. Annals of Forest Science, 2020, 77, 1.	2.0	8
120	The role of terrestrial productivity and hydrology in regulating aquatic dissolved organic carbon concentrations in boreal catchments. Global Change Biology, 2022, 28, 2764-2778.	9.5	8
121	Seasonal Variation in Soil Greenhouse Gas Emissions at Three Age-Stages of Dawn Redwood (Metasequoia glyptostroboides) Stands in an Alluvial Island, Eastern China. Forests, 2016, 7, 256.	2.1	7
122	Corrigendum to: The long-term impact of low-intensity surface fires on litter decomposition and enzyme activities in boreal coniferous forests. International Journal of Wildland Fire, 2016, 25, 618.	2.4	7
123	Are the climatic factors combined with reindeer grazing affecting the soil CO2 emissions in subarctic boreal pine forest?. Catena, 2017, 149, 616-622.	5.0	7
124	Soil CO2 efflux in uneven-aged and even-aged Norway spruce stands in southern Finland. IForest, 2018, 11, 705-712.	1.4	7
125	Effects of variable temperature and moisture conditions on respiration and nonstructural carbohydrate dynamics of tree roots. Agricultural and Forest Meteorology, 2022, 323, 109040.	4.8	6
126	Seasonal and Diurnal Variations in Atmospheric and Soil Air ¹⁴ CO ₂ in a Boreal Scots Pine Forest. Radiocarbon, 2018, 60, 283-297.	1.8	5

#	Article	IF	CITATIONS
127	Carbon dioxide and methane fluxes from different surface types in a created urban wetland. Biogeosciences, 2020, 17, 3409-3425.	3.3	5
128	Newtonian boreal forest ecology: The Scots pine ecosystem as an example. PLoS ONE, 2017, 12, e0177927.	2.5	4
129	Molecular composition of soil dissolved organic matter in recently-burned and long-unburned boreal forests. International Journal of Wildland Fire, 2020, 29, 541.	2.4	4
130	Carbon dynamics in a Boreal land-stream-lake continuum during the spring freshet of two hydrologically contrasting years. Biogeochemistry, 2020, 148, 91-109.	3.5	3
131	Adaptation of Abies fargesii var. faxoniana (Rehder et E.H. Wilson) Tang S Liu seedlings to high altitude in a subalpine forest in southwestern China with special reference to phloem and xylem traits. Annals of Forest Science, 2021, 78, 1.	2.0	3
132	Age-related response of forest floor biogenic volatile organic compound fluxes to boreal forest succession after wildfires. Agricultural and Forest Meteorology, 2021, 308-309, 108584.	4.8	3
133	Comparing an exponential respiration model to alternative models for soil respiration components in a Canadian wildfire chronosequence (FireResp v1.0). Geoscientific Model Development, 2021, 14, 6605-6622.	3.6	3
134	Heterotrophic and rhizospheric respiration in coniferous forest soils along a latitudinal gradient. Agricultural and Forest Meteorology, 2022, 317, 108876.	4.8	3
135	Processes in Living Structures. , 2013, , 43-223.		2
136	Nitrogen Recovery from Clear-Cut Forest Runoff Using Biochar: Adsorption–Desorption Dynamics Affected by Water Nitrogen Concentration. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	2
137	Assessment of a portable UV–Vis spectrophotometer's performance in remote areas: Stream water DOC, Fe content and spectral data. Data in Brief, 2021, 35, 106747.	1.0	1
138	Impact of Forest Harvesting Intensity and Water Table on Biodegradability of Dissolved Organic Carbon in Boreal Peat in an Incubation Experiment. Forests, 2022, 13, 599.	2.1	1
139	How to Utilise the Knowledge of Causal Responses?. , 2013, , 397-469.		0

140 Fluxes of Carbon, Water and Nutrients. , 2013, , 225-328.