
Subramanyan Vasudevan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9517078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen doped Graphene Nano sheets (Nâ^'Gns) as Electrocatalyst for Electroâ€Fenton Process for the Degradation of Highly Toxic Chlorophenoxy acid Herbicides from Water. ChemistrySelect, 2021, 6, 2804-2810.	0.7	12
2	New Insight into the Electrocatalysis of Ni-Rich Trimetallic NCM-Based Hydroxides for Water Oxidation. ACS Applied Energy Materials, 2021, 4, 6520-6530.	2.5	5
3	Nitrogen Doped Carbon Nanomaterial as Electrocatalyst for Oxygen Reduction Reaction in Acidic Media: To use in Electroâ€Fenton. ChemistrySelect, 2020, 5, 10034-10040.	0.7	11
4	Sulfurâ€Doped CarbonÂChain Network as Highâ€Performance Electrocatalyst for Electroâ€Fenton System. ChemistrySelect, 2019, 4, 2428-2435.	0.7	20
5	OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, 2018, 261, 329-341.	4.8	189
6	Facile one-pot electrosynthesis of zinc hydroxide for the adsorption of hazardous 2-(2-methyl-4-chlorophenoxy) propionic acid (MCPP) from water and its modelling studies. Journal of Environmental Chemical Engineering, 2018, 6, 2017-2026.	3.3	29
7	An Investigation of Interfacial and Photoelectrochemical Performance of Thermally Prepared C,Nâ€codopedÂTiO ₂ Photoanodes for Water Splitting. ChemistrySelect, 2017, 2, 288-294.	0.7	16
8	Eco–friendly and Easily Prepared GrapheneNanosheets for Safe Drinking Water: Removal ofÂChlorophenoxyacetic Acid Herbicides. ChemistrySelect, 2017, 2, 342-355.	0.7	38
9	Enhanced removal of cephalosporin based antibiotics (CBA) from water by one-pot electrosynthesized Mg(OH) ₂ : a combined theoretical and experimental study to pilot scale. New Journal of Chemistry, 2017, 41, 4518-4530.	1.4	42
10	α-Fe2O3/TiO2 heterostructured photoanode on titanium substrate for photoelectrochemical water electrolysis. Materials Chemistry and Physics, 2017, 199, 249-256.	2.0	9
11	Can Electrochemistry Make the Worlds Water Clean? – A Systematic and Comprehensive Overview. International Journal of Waste Resources, 2016, 6, .	0.2	6
12	New Insight into Understand the Enhanced Photoconductivity Properties of Ti (O ₂) Plate Spurted with Al ₂ O ₃ for Water Oxidation. ChemistrySelect, 2016, 1, 5037-5041.	0.7	2
13	Graphene and Grapheneâ€Based Composites: A Rising Star in Water Purification ―A Comprehensive Overview. ChemistrySelect, 2016, 1, 4358-4385.	0.7	75
14	Facile one-pot electrosynthesis of Al(OH) ₃ – kinetics and equilibrium modeling for adsorption of 2,4,5-trichlorophenoxyacetic acid from aqueous solution. New Journal of Chemistry, 2016, 40, 2249-2258.	1.4	45
15	Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater. Water Research, 2016, 93, 230-241.	5.3	59
16	Kinetics, thermodynamics and isotherm modeling for removal of nitrate from liquids by facile one-pot electrosynthesized nano zinc hydroxide. Journal of Molecular Liquids, 2016, 215, 204-211.	2.3	98
17	Facile one-pot synthesis of nano-zinc hydroxide by electro-dissolution of zinc as a sacrificial anode and the application for adsorption of Th4+, U4+, and Ce4+ from aqueous solution. Research on Chemical Intermediates, 2016, 42, 4077-4095.	1.3	45
18	Adsorption kinetics, isotherms, and thermodynamic studies for Hg ²⁺ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalination and Water Treatment, 2016, 57, 18551-18559.	1.0	192

1

#	Article	IF	CITATIONS
19	An Overview of Electrochemical Processes for Purification of Water Contaminated by Agricultural Activities. , 2016, , 365-372.		0
20	Decontamination of selenate from aqueous solution by oxidized multi-walled carbon nanotubes. Powder Technology, 2015, 274, 268-275.	2.1	46
21	Novel cross-linked anion exchange membrane based on hexaminium functionalized poly(vinylbenzyl) Tj ETQq1 1	0.784314 1.7	rgBT /Overlo
22	Eco-friendly and facilely prepared silica modified amorphous titania (TiO2–SiO2) electrocatalyst for the O2 and H2 evolution reactions. Catalysis Science and Technology, 2015, 5, 5016-5022.	2.1	24
23	Adsorption of herbicide 2-(2,4-dichlorophenoxy)propanoic acid by electrochemically generated aluminum hydroxides: an alternative to chemical dosing. RSC Advances, 2015, 5, 39799-39809.	1.7	65
24	Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution. Chemical Engineering Research and Design, 2015, 93, 522-530.	2.7	97
25	Removal of lead from aqueous solutions by electrocoagulation: isotherm, kinetics and thermodynamic studies. International Journal of Environmental Science and Technology, 2015, 12, 683-692.	1.8	55
26	Use of hydrous titanium dioxide as potential sorbent for the removal of manganese from water. Journal of Electrochemical Science and Engineering, 2014, 4, .	1.6	5
27	Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from water by in situ generated metal hydroxides using sacrificial anodes. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2943-2949.	2.7	52
28	Electrochemistry: as cause and cure in water pollution—an overview. Environmental Chemistry Letters, 2014, 12, 97-108.	8.3	290
29	Platinum deposition on the nafion membrane by impregnation reduction using nonionic surfactant for water electrolysis – An alternate approach. Energy, 2014, 68, 148-151.	4.5	13
30	An in situ electrosynthesis of metal hydroxides and their application for adsorption of 4-chloro-2-methylphenoxyacetic acid (MCPA) from aqueous solution. Journal of Environmental Chemical Engineering, 2014, 2, 2068-2077.	3.3	33
31	An efficient removal of phenol from water by peroxi-electrocoagulation processes. Journal of Water Process Engineering, 2014, 2, 53-57.	2.6	62
32	Removal of manganese from water by electrocoagulation: Adsorption, kinetics and thermodynamic studies. Canadian Journal of Chemical Engineering, 2013, 91, 448-458.	0.9	58
33	A critical study on the removal of copper by an electrochemically assisted coagulation: equilibrium, kinetics, and thermodynamics. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 162-171.	0.8	31
34	Graphene—a promising material for removal of perchlorate (ClO4 â^') from water. Environmental Science and Pollution Research, 2013, 20, 5114-5124.	2.7	57
35	Recovery of hydrogen and removal of nitrate from water by electrocoagulation process. Environmental Science and Pollution Research, 2013, 20, 2184-2192.	2.7	45

Belectrolysis - Inevitable energy transformer in a world of sustainable energy. , 2013, , .

#	Article	IF	CITATIONS
37	Removal of copper from water by electrocoagulation process—effect of alternating current (AC) and direct current (DC). Environmental Science and Pollution Research, 2013, 20, 399-412.	2.7	73
38	Oxidized multiwalled carbon nanotubes as adsorbent for the removal of manganese from aqueous solution. Environmental Science and Pollution Research, 2013, 20, 987-996.	2.7	49
39	Studies on polymer modified metal oxide anode for oxygen evolution reaction in saline water. Journal of Electroanalytical Chemistry, 2013, 697, 1-4.	1.9	24
40	Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 808-814.	2.7	122
41	Electrochemically assisted coagulation for the removal of boron from water using zinc anode. Desalination, 2013, 310, 122-129.	4.0	66
42	Electrochemistry and Water Pollution. Environmental Chemistry for A Sustainable World, 2013, , 27-68.	0.3	1
43	Effect of alternating and direct current in an electrocoagulation process on the removal of cadmium from water. Water Science and Technology, 2012, 65, 353-360.	1.2	27
44	Electrocoagulation Studies on the Removal of Copper from Water Using Mild Steel Electrode. Water Environment Research, 2012, 84, 209-219.	1.3	29
45	Studies on the removal of arsenate from water through electrocoagulation using direct and alternating current. Desalination and Water Treatment, 2012, 48, 163-173.	1.0	26
46	Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water. Environmental Science and Pollution Research, 2012, 19, 2734-2744.	2.7	66
47	Process Conditions and Kinetics for the Removal of Copper from Water by Electrocoagulation. Environmental Engineering Science, 2012, 29, 563-572.	0.8	35
48	Simultaneous removal of Co, Cu, and Cr from water by electrocoagulation. Toxicological and Environmental Chemistry, 2012, 94, 1930-1940.	0.6	46
49	The adsorption of phosphate by graphene from aqueous solution. RSC Advances, 2012, 2, 5234.	1.7	189
50	Electrochemical removal of boron from water: Adsorption and thermodynamic studies. Canadian Journal of Chemical Engineering, 2012, 90, 1017-1026.	0.9	70
51	Effects of alternating current (AC) and direct current (DC) in electrocoagulation process for the removal of iron from water. Canadian Journal of Chemical Engineering, 2012, 90, 1160-1169.	0.9	30
52	Sulfonated Polystyrene-Block-(Ethylene-Ran-Butylene)-Block-Polystyrene (SPSEBS) Membrane for Sea Water Electrolysis to Generate Hydrogen. ECS Transactions, 2011, 33, 157-166.	0.3	4
53	Sulfonated Poly (Ether Ether Ketone)-Based Composite Proton-Exchange Membrane for Energy Production. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 742-753.	1.8	19
54	Studies relating to an electrochemically assisted coagulation for the removal of chromium from water using zinc anode. Water Science and Technology: Water Supply, 2011, 11, 142-150.	1.0	34

#	Article	IF	CITATIONS
55	Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water. Journal of Chemical Technology and Biotechnology, 2011, 86, 428-436.	1.6	113
56	Studies on the Al–Zn–In-alloy as anode material for the removal of chromium from drinking water in electrocoagulation process. Desalination, 2011, 275, 260-268.	4.0	84
57	Development and performance evaluation of Proton Exchange Membrane (PEM) based hydrogen generator for portable applications. International Journal of Hydrogen Energy, 2011, 36, 1399-1403.	3.8	34
58	Nitrate reduction in water: Influence of the addition of a second metal on the performances of the Pd/CeO2 catalyst. Journal of Hazardous Materials, 2011, 185, 1412-1417.	6.5	77
59	Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water. Journal of Hazardous Materials, 2011, 192, 26-34.	6.5	99
60	Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water – A novel approach. Separation and Purification Technology, 2011, 80, 643-651.	3.9	81
61	Polyvinyl Alcohol Based Membrane as Separator for Alkaline Water Electrolyzer. Separation Science and Technology, 2011, 46, 1563-1570.	1.3	13
62	10.2478/s11814-009-0176-9., 2011, 26, 1058.		2
63	10.2478/s11814-009-0224-5. , 2011, 26, 1246.		0
64	Electrocoagulation studies on removal of cadmium using magnesium electrode. Journal of Applied Electrochemistry, 2010, 40, 2023-2032.	1.5	49
65	Electrochemical Coagulation for Chromium Removal: Process Optimization, Kinetics, Isotherms and Sludge Characterization. Clean - Soil, Air, Water, 2010, 38, 9-16.	0.7	60
66	Removal of NO ₃ [–] from Drinking Water by Electrocoagulation – An Alternate Approach. Clean - Soil, Air, Water, 2010, 38, 225-229.	0.7	56
67	Studies on the Removal of Arsenate by Electrochemical Coagulation Using Aluminum Alloy Anode. Clean - Soil, Air, Water, 2010, 38, 506-515.	0.7	42
68	Optimization of the process parameters for the removal of boron from drinking water by electrocoagulation—a clean technology. Journal of Chemical Technology and Biotechnology, 2010, 85, 926-933.	1.6	41
69	Studies Relating to Removal of Arsenate by Electrochemical Coagulation: Optimization, Kinetics, Coagulant Characterization. Separation Science and Technology, 2010, 45, 1313-1325.	1.3	47
70	Optimization of the process parameters for the removal of phosphate from drinking water by electrocoagulation. Desalination and Water Treatment, 2009, 12, 407-414.	1.0	47
71	Studies on the Removal of Iron from Drinking Water by Electrocoagulation – A Clean Process. Clean - Soil, Air, Water, 2009, 37, 45-51.	0.7	63
72	Studies on a Mgâ€Alâ€Zn Alloy as an Anode for the Removal of Fluoride from Drinking Water in an Electrocoagulation Process. Clean - Soil, Air, Water, 2009, 37, 372-378.	0.7	62

Subramanyan Vasudevan

#	Article	IF	CITATIONS
73	Removal of iron from drinking water by electrocoagulation: Adsorption and kinetics studies. Korean Journal of Chemical Engineering, 2009, 26, 1058-1064.	1.2	57
74	Optimization of the process parameters for an electrochemical preparation of strontium perchlorate. Korean Journal of Chemical Engineering, 2009, 26, 1246-1251.	1.2	1
75	An alternative approach to selective sea water oxidation for hydrogen production. Electrochemistry Communications, 2009, 11, 1700-1702.	2.3	63
76	Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium aluminium alloy and mild steel anodes. Journal of Hazardous Materials, 2009, 164, 1480-1486.	6.5	127
77	Studies on the Removal of Phosphate from Drinking Water by Electrocoagulation Process. Industrial & & & & & & & & & & & & & & & & & & &	1.8	98
78	Studies Relating To Cathodic Reactions In Neutral Chloride Solutions Used In Chlorate Processes. Industrial & Engineering Chemistry Research, 2008, 47, 5742-5745.	1.8	2
79	Studies Relating to Electrolytic Preparation of Potassium Bromate. Industrial & Engineering Chemistry Research, 2008, 47, 1743-1746.	1.8	4
80	Effect of Cations of Alkali and Alkaline-Earth Metal Chlorides for Chlorine Evolution Reaction. Industrial & Engineering Chemistry Research, 2008, 47, 976-979.	1.8	5
81	Studies on the Electrolytic Preparation of Ba(ClO ₄) ₂ . Industrial & Engineering Chemistry Research, 2007, 46, 6211-6216.	1.8	1
82	Studies on the Electrochemical Preparation of Sb2O3. Industrial & Engineering Chemistry Research, 2007, 46, 7870-7874.	1.8	10
83	Electrochemical Regeneration of Chromium Containing Solution from Metal Finishing Industry. Industrial & Engineering Chemistry Research, 2007, 46, 2898-2901.	1.8	23
84	Recovery of Chromium from the Solid Residue by In-Situ-Generated Hypochlorite. Industrial & Engineering Chemistry Research, 2006, 45, 7743-7747.	1.8	14
85	Electrochemical Preparation of Barium Chlorate from Barium Chloride. Industrial & Engineering Chemistry Research, 2006, 45, 2923-2928.	1.8	7
86	Studies on the Oxidation of As(III) to As(V) by In-Situ-Generated Hypochlorite. Industrial & Engineering Chemistry Research, 2006, 45, 7729-7732.	1.8	34
87	Electrochemical behaviour of mono-chloronitrobenzene as cathode material for magnesium reserve batteries. Journal of Power Sources, 2005, 148, 112-115.	4.0	10
88	An electrochemical process for the separation of cerium from rare earths. Hydrometallurgy, 2005, 76, 115-121.	1.8	27
89	Performance characteristics of organic–inorganic composite electrodes in magnesium reserve batteries. Journal of Applied Electrochemistry, 2005, 35, 1141-1144.	1.5	2
90	1-Nitronapthalene as a cathode material for magnesium reserve batteries. Journal of Power Sources, 1996, 58, 213-215.	4.0	11

6

#	Article	IF	CITATIONS
91	Performance characteristics of chloro-substituted dinitrobenzene for magnesium reserve batteries. Journal of Power Sources, 1993, 45, 119-130.	4.0	5
92	Electrolytic preparation of magnesium perchlorate. Journal of Applied Electrochemistry, 1992, 22, 877-882.	1.5	10
93	Conductivity of low-temperature electrolytes for magnesium batteries. Journal of Power Sources, 1992, 39, 155-161.	4.0	10
94	Electrolytic preparation of magnesium chlorate from magnesium chloride. Journal of Applied Electrochemistry, 1992, 22, 1201-1204.	1.5	6
95	Dodecyl sulfate chain anchored bio-char to sequester triaryl methane dyes: equilibrium, kinetics, and adsorption mechanism. , 0, 67, 357-370.		13