Paul J Tackley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9516746/publications.pdf Version: 2024-02-01

		16451	34986
183	11,418	64	98
papers	citations	h-index	g-index
224	224	224	4139
all docs	docs citations	times ranked	citing authors

DALLI L TACKLEY

#	Article	IF	CITATIONS
1	Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle. Nature, 1993, 361, 699-704.	27.8	562
2	Mantle Convection and Plate Tectonics: Toward an Integrated Physical and Chemical Theory. Science, 2000, 288, 2002-2007.	12.6	376
3	A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle. Nature, 2005, 434, 882-886.	27.8	345
4	A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the †sticky air' method. Geophysical Journal International, 2012, 189, 38-54.	2.4	301
5	Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors, 2008, 171, 7-18.	1.9	289
6	Effects of multiple phase transitions in a three-dimensional spherical model of convection in Earth's mantle. Journal of Geophysical Research, 1994, 99, 15877.	3.3	223
7	Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. Journal of Geophysical Research, 1996, 101, 3311-3332.	3.3	208
8	Can we constrain the interior structure of rocky exoplanets from mass and radius measurements?. Astronomy and Astrophysics, 2015, 577, A83.	5.1	199
9	Self-consistent generation of tectonic plates in three-dimensional mantle convection. Earth and Planetary Science Letters, 1998, 157, 9-22.	4.4	191
10	Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	175
11	Continental crust formation on early Earth controlled by intrusive magmatism. Nature, 2017, 545, 332-335.	27.8	174
12	Effects of strongly temperatureâ€dependent viscosity on timeâ€dependent, threeâ€dimensional models of mantle convection. Geophysical Research Letters, 1993, 20, 2187-2190.	4.0	171
13	Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: D″?. Geodynamic Series, 1998, , 231-253.	0.1	162
14	Plate tectonics on super-Earths: Equally or more likely than on Earth. Earth and Planetary Science Letters, 2011, 310, 252-261.	4.4	162
15	Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth-Science Reviews, 2012, 110, 1-25.	9.1	153
16	Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	2.5	147
17	A free plate surface and weak oceanic crust produce singleâ€sided subduction on Earth. Geophysical Research Letters, 2012, 39, .	4.0	147
18	Strong heterogeneity caused by deep mantle layering. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-22.	2.5	146

#	Article	IF	CITATIONS
19	Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: Twoâ€dimensional models. Journal of Geophysical Research, 2012, 117, .	3.3	142
20	Superplumes or plume clusters?. Physics of the Earth and Planetary Interiors, 2004, 146, 147-162.	1.9	140
21	Evolution of U-Pb and Sm-Nd systems in numerical models of mantle convection and plate tectonics. Journal of Geophysical Research, 2004, 109, .	3.3	138
22	Evolution of helium and argon isotopes in a convecting mantle. Physics of the Earth and Planetary Interiors, 2004, 146, 417-439.	1.9	134
23	Mixing and deformations in mantle plumes. Earth and Planetary Science Letters, 2002, 196, 1-15.	4.4	123
24	The influence of MORB and harzburgite composition on thermo-chemical mantle convection in a 3-D spherical shell with self-consistently calculated mineral physics. Earth and Planetary Science Letters, 2010, 296, 403-412.	4.4	117
25	Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity. Icarus, 2013, 225, 50-61.	2.5	115
26	Planforms of self onsistently generated plates in 3D spherical geometry. Geophysical Research Letters, 2008, 35, .	4.0	113
27	Subduction controls the distribution and fragmentation of Earth's tectonic plates. Nature, 2016, 535, 140-143.	27.8	112
28	Effects of a perovskite-post perovskite phase change near core-mantle boundary in compressible mantle convection. Geophysical Research Letters, 2004, 31, .	4.0	108
29	Modeling mantle convection in the spherical annulus. Physics of the Earth and Planetary Interiors, 2008, 171, 48-54.	1.9	108
30	Spatial and temporal variability in Hawaiian hotspot volcanism induced by small-scale convection. Nature Geoscience, 2011, 4, 457-460.	12.9	105
31	The primitive nature of large low shear-wave velocity provinces. Earth and Planetary Science Letters, 2012, 349-350, 198-208.	4.4	103
32	Discretization errors and free surface stabilization in the finite difference and marker-in-cell method for applied geodynamics: A numerical study. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	102
33	Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus, 2011, 215, 346-357.	2.5	99
34	Three-Dimensional Simulations of Plume-Lithosphere Interaction at the Hawaiian Swell. Science, 1998, 279, 1008-1011.	12.6	98
35	Atmosphere/mantle coupling and feedbacks on Venus. Journal of Geophysical Research E: Planets, 2014, 119, 1189-1217.	3.6	98
36	On the ability of phase transitions and viscosity layering to induce long wavelength Heterogeneity in the mantle. Geophysical Research Letters, 1996, 23, 1985-1988.	4.0	97

#	Article	IF	CITATIONS
37	Nonâ€hotspot volcano chains originating from smallâ€scale sublithospheric convection. Geophysical Research Letters, 2007, 34, .	4.0	96
38	Linking continental drift, plate tectonics and the thermal state of the Earth's mantle. Earth and Planetary Science Letters, 2012, 351-352, 134-146.	4.4	89
39	Towards self-consistent modeling of the martian dichotomy: The influence of one-ridge convection on crustal thickness distribution. Icarus, 2009, 202, 429-443.	2.5	85
40	Transitions in thermal convection with strongly variable viscosity. Physics of the Earth and Planetary Interiors, 1997, 102, 201-212.	1.9	83
41	Dynamic Causes of the Relation Between Area and Age of the Ocean Floor. Science, 2012, 336, 335-338.	12.6	83
42	Lateral variations in CMB heat flux and deep mantle seismic velocity caused by a thermal–chemical-phase boundary layer in 3D spherical convection. Earth and Planetary Science Letters, 2008, 271, 348-358.	4.4	82
43	Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	2.5	81
44	Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	80
45	Efficient cooling of rocky planets by intrusive magmatism. Nature Geoscience, 2018, 11, 322-327.	12.9	78
46	Effects of thermo-chemical mantle convection on the thermal evolution of the Earth's core. Earth and Planetary Science Letters, 2004, 220, 107-119.	4.4	77
47	Incorporating selfâ€consistently calculated mineral physics into thermochemical mantle convection simulations in a 3â€D spherical shell and its influence on seismic anomalies in Earth's mantle. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	76
48	The interaction between the post-perovskite phase change and a thermo-chemical boundary layer near the core–mantle boundary. Earth and Planetary Science Letters, 2005, 238, 204-216.	4.4	75
49	Dynamics of core formation and equilibration by negative diapirism. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	75
50	A deep mantle origin for the primitive signature of ocean island basalt. Nature Geoscience, 2011, 4, 879-882.	12.9	75
51	Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth. Journal of Geophysical Research, 2005, 110, .	3.3	73
52	Searching for models of thermo-chemical convection that explain probabilistic tomography. Il—Influence of physical and compositional parameters. Physics of the Earth and Planetary Interiors, 2009, 176, 1-18.	1.9	73
53	Influence of initial CMB temperature and other parameters on the thermal evolution of Earth's core resulting from thermochemical spherical mantle convection. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	73
54	Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geoscience Frontiers, 2018, 9, 103-119.	8.4	72

#	Article	IF	CITATIONS
55	Three-Dimensional Simulations of Mantle Convection in Io. Icarus, 2001, 149, 79-93.	2.5	71
56	Effects of low-viscosity post-perovskite on thermo-chemical mantle convection in a 3-D spherical shell. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	71
57	Living dead slabs in 3-D: The dynamics of compositionally-stratified slabs entering a "slab graveyard― above the core-mantle boundary. Physics of the Earth and Planetary Interiors, 2011, 188, 150-162.	1.9	71
58	Threeâ€dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy. Geophysical Research Letters, 2014, 41, 8736-8743.	4.0	71
59	Searching for models of thermo-chemical convection that explain probabilistic tomography. Physics of the Earth and Planetary Interiors, 2008, 171, 357-373.	1.9	69
60	A community benchmark for viscoplastic thermal convection in a 2â€Ð square box. Geochemistry, Geophysics, Geosystems, 2015, 16, 2175-2196.	2.5	69
61	Generation of mega-plumes from the core-mantle boundary in a compressible mantle with temperature-dependent viscosity. Geophysical Research Letters, 1998, 25, 1999-2002.	4.0	66
62	Deep mantle heat flow and thermal evolution of the Earth's core in thermochemical multiphase models of mantle convection. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	66
63	Comparisons Between Seismic Earth Structures and Mantle Flow Models Based on Radial Correlation Functions. Science, 1993, 261, 1427-1431.	12.6	65
64	Influence of magmatism on mantle cooling, surface heat flow and Urey ratio. Earth and Planetary Science Letters, 2012, 329-330, 1-10.	4.4	65
65	Intraplate volcanism with complex ageâ€distance patterns: A case for smallâ€scale sublithospheric convection. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	64
66	The Generation of Plate Tectonics from Mantle Dynamics. , 2015, , 271-318.		64
67	Development of a Stokes flow solver robust to large viscosity jumps using a Schur complement approach with mixed precision arithmetic. Journal of Computational Physics, 2011, 230, 8835-8851.	3.8	62
68	Plutonic‣quishy Lid: A New Global Tectonic Regime Generated by Intrusive Magmatism on Earth‣ike Planets. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008756.	2.5	61
69	Influence of the Northern Hemisphere annular mode on ENSO by modulating westerly wind bursts. Geophysical Research Letters, 2006, 33, .	4.0	60
70	The stability and structure of primordial reservoirs in the lower mantle: insights from models of thermochemical convection in three-dimensional spherical geometry. Geophysical Journal International, 2014, 199, 914-930.	2.4	59
71	Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth's mantle and core. Geochemistry, Geophysics, Geosystems, 2014, 15, 619-633.	2.5	59
72	Spontaneous development of arcuate singleâ€sided subduction in global 3â€D mantle convection models with a free surface. Journal of Geophysical Research: Solid Earth, 2014, 119, 5921-5942.	3.4	58

#	Article	IF	CITATIONS
73	On the penetration of an endothermic phase transition by upwellings and downwellings. Journal of Geophysical Research, 1995, 100, 15477-15488.	3.3	57
74	Some dynamical consequences of partial melting in Earth's deep mantle. Physics of the Earth and Planetary Interiors, 2007, 162, 149-163.	1.9	53
75	The Quest for self-consistent generation of plate tectonics in mantle convection models. Geophysical Monograph Series, 2000, , 47-72.	0.1	52
76	Numerical modeling of protocore destabilization during planetary accretion: Methodology and results. Icarus, 2009, 204, 732-748.	2.5	50
77	Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermochemical models. Geophysical Journal International, 2011, 187, 1301-1318.	2.4	50
78	A Mechanism for Spontaneous Self-Perpetuating Volcanism on the Terrestrial Planets. , 1993, , 307-321.		50
79	Small-scale sublithospheric convection reconciles geochemistry and geochronology of â€ ⁻ Superplume' volcanism in the western and south Pacific. Earth and Planetary Science Letters, 2010, 290, 224-232.	4.4	49
80	Parameters controlling dynamically selfâ€consistent plate tectonics and singleâ€sided subduction in global models of mantle convection. Journal of Geophysical Research: Solid Earth, 2015, 120, 3680-3706.	3.4	49
81	Convergence of tectonic reconstructions and mantle convection models for significant fluctuations in seafloor spreading. Earth and Planetary Science Letters, 2013, 383, 92-100.	4.4	48
82	A sequential data assimilation approach for the joint reconstruction of mantle convection and surface tectonics. Geophysical Journal International, 2016, 204, 200-214.	2.4	47
83	Earth's core formation aided by flow channelling instabilities induced by iron diapirs. Earth and Planetary Science Letters, 2008, 271, 24-33.	4.4	46
84	The thermochemical structure and evolution of Earth's mantle: constraints and numerical models. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 2593-2609.	3.4	45
85	Three-dimensional structures and dynamics in the deep mantle: Effects of post-perovskite phase change and deep mantle layering. Geophysical Research Letters, 2006, 33, .	4.0	44
86	Melting-induced crustal production helps plate tectonics on Earth-like planets. Earth and Planetary Science Letters, 2016, 439, 18-28.	4.4	43
87	Thermo-chemical structure in the mantle arising from a three-component convective system and implications for geochemistry. Physics of the Earth and Planetary Interiors, 2004, 146, 125-138.	1.9	42
88	The role of rheology in lithospheric thinning by mantle plumes. Geophysical Research Letters, 1999, 26, 1073-1076.	4.0	40
89	Plume heat flow is much lower than CMB heat flow. Earth and Planetary Science Letters, 2006, 241, 202-210.	4.4	40
90	The fate of the slabs interacting with a density/viscosity hill in the mid-mantle. Physics of the Earth and Planetary Interiors, 2010, 180, 271-282.	1.9	40

#	Article	IF	CITATIONS
91	Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface. Progress in Earth and Planetary Science, 2016, 3, .	3.0	40
92	Role of ironâ€spin transition in ferropericlase on seismic interpretation: A broad thermochemical transition in the mid mantle?. Geophysical Research Letters, 2010, 37, .	4.0	38
93	Numerical modelling of convection interacting with a melting and solidification front: Application to the thermal evolution of the basal magma ocean. Physics of the Earth and Planetary Interiors, 2012, 206-207, 51-66.	1.9	38
94	Thermal and compositional evolution of the martian mantle: Effects of phase transitions and melting. Physics of the Earth and Planetary Interiors, 2013, 216, 32-58.	1.9	38
95	Effect of a single large impact on the coupled atmosphere-interior evolution of Venus. Icarus, 2016, 268, 295-312.	2.5	38
96	Heat partitioning in terrestrial planets during core formation by negative diapirism. Earth and Planetary Science Letters, 2010, 290, 13-19.	4.4	36
97	Statistical cyclicity of the supercontinent cycle. Geophysical Research Letters, 2014, 41, 2351-2358.	4.0	35
98	Stress memory effect in viscoelastic stagnant lid convection. Geophysical Journal International, 2017, 209, 1462-1475.	2.4	35
99	Constraints on mantle viscosity structure from continental drift histories in spherical mantle convection models. Tectonophysics, 2018, 746, 339-351.	2.2	35
100	Growing primordial continental crust self-consistently in global mantle convection models. Gondwana Research, 2019, 73, 96-122.	6.0	31
101	Convection in Io's asthenosphere: Redistribution of nonuniform tidal heating by mean flows. Journal of Geophysical Research, 2001, 106, 32971-32981.	3.3	30
102	Influence of plate tectonic mode on the coupled thermochemical evolution of Earth's mantle and core. Geochemistry, Geophysics, Geosystems, 2015, 16, 3400-3413.	2.5	30
103	Prospects for an ancient dynamo and modern crustal remanent magnetism on Venus. Earth and Planetary Science Letters, 2018, 502, 46-56.	4.4	30
104	The evolution and distribution of recycled oceanic crust in the Earth's mantle: Insight from geodynamic models. Earth and Planetary Science Letters, 2020, 537, 116171.	4.4	29
105	Subduction of the Western Pacific Plate underneath Northeast China: Implications of numerical studies. Physics of the Earth and Planetary Interiors, 2010, 178, 92-99.	1.9	28
106	Low seismic resolution cannot explain S/P decorrelation in the lower mantle. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	28
107	The dynamical control of subduction parameters on surface topography. Geochemistry, Geophysics, Geosystems, 2017, 18, 1661-1687.	2.5	28
108	The influence of bulk composition on the long-term interior-atmosphere evolution of terrestrial exoplanets. Astronomy and Astrophysics, 2020, 643, A44.	5.1	28

#	Article	IF	CITATIONS
109	Mantle dynamics: Influence of the transition zone. Reviews of Geophysics, 1995, 33, 275.	23.0	27
110	Stagnant lid convection in bottom-heated thin 3-D spherical shells: Influence of curvature and implications for dwarf planets and icy moons. Journal of Geophysical Research E: Planets, 2014, 119, 1895-1913.	3.6	27
111	Effects of the post-perovskite phase transition properties on the stability and structure of primordial reservoirs in the lower mantle of the Earth. Earth and Planetary Science Letters, 2015, 432, 1-12.	4.4	27
112	Dry late accretion inferred from Venus's coupled atmosphere and internal evolution. Nature Geoscience, 2020, 13, 265-269.	12.9	27
113	Where does subduction initiate and cease? A global scale perspective. Earth and Planetary Science Letters, 2019, 528, 115836.	4.4	26
114	On the penetration of the 660 km phase change by mantle downflows. Geophysical Research Letters, 1993, 20, 2599-2602.	4.0	25
115	Numerical and laboratory studies of mantle convection: Philosophy, accomplishments, and thermochemical structure and evolution. Geophysical Monograph Series, 2005, , 83-99.	0.1	25
116	Buoyant melting instabilities beneath extending lithosphere: 1. Numerical models. Journal of Geophysical Research, 2008, 113, .	3.3	25
117	Penetration of mantle plumes through depleted lithosphere. Journal of Geophysical Research, 2005, 110, .	3.3	24
118	Layer cake or plum pudding?. Nature Geoscience, 2008, 1, 157-158.	12.9	24
119	Earth curvature effects on subduction morphology: Modeling subduction in a spherical setting. Acta Geotechnica, 2009, 4, 95-105.	5.7	24
120	Implications of high core thermal conductivity on Earth's coupled mantle and core evolution. Geophysical Research Letters, 2013, 40, 2652-2656.	4.0	23
121	Effects of lowâ€viscosity postâ€perovskite on the stability and structure of primordial reservoirs in the lower mantle. Geophysical Research Letters, 2014, 41, 7089-7097.	4.0	23
122	Formation of ridges in a stable lithosphere in mantle convection models with a viscoplastic rheology. Geophysical Research Letters, 2015, 42, 4770-4777.	4.0	23
123	Mantle Geochemical Geodynamics. , 2015, , 521-585.		23
124	Constraints on core–mantle boundary topography from models of thermal and thermochemical convection. Geophysical Journal International, 2018, 212, 164-188.	2.4	23
125	Convection under a lid of finite conductivity: Heat flux scaling and application to continents. Journal of Geophysical Research, 2007, 112, .	3.3	22
126	Temperature and heat flux scalings for isoviscous thermal convection in spherical geometry. Geophysical Journal International, 2010, , no-no.	2.4	22

#	Article	IF	CITATIONS
127	Numerical simulation of thermal plumes in a Herschel–Bulkley fluid. Journal of Non-Newtonian Fluid Mechanics, 2013, 195, 32-45.	2.4	22
128	Assessing the role of slab rheology in coupled plate-mantle convection models. Earth and Planetary Science Letters, 2015, 430, 191-201.	4.4	22
129	Influences of the buoyancy of partially molten rock on 3-D plume patterns and melt productivity above retreating slabs. Physics of the Earth and Planetary Interiors, 2011, 185, 112-121.	1.9	21
130	Radial 1â€D seismic structures in the deep mantle in mantle convection simulations with selfâ€consistently calculated mineralogy. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	21
131	High Rayleigh number thermal convection in volumetrically heated spherical shells. Journal of Geophysical Research, 2012, 117, .	3.3	21
132	Thermal and compositional evolution of the martian mantle: Effects of water. Physics of the Earth and Planetary Interiors, 2013, 220, 50-72.	1.9	21
133	Using pattern recognition to infer parameters governing mantle convection. Physics of the Earth and Planetary Interiors, 2016, 257, 171-186.	1.9	21
134	On the predictability limit of convection models of the Earth's mantle. Geochemistry, Geophysics, Geosystems, 2014, 15, 2319-2328.	2.5	20
135	Large-Scale Thermo-chemical Structure of the Deep Mantle: Observations and Models. , 2015, , 479-515.		19
136	Modelling Earth's surface topography: Decomposition of the static and dynamic components. Physics of the Earth and Planetary Interiors, 2016, 261, 172-186.	1.9	19
137	Rheological controls on the terrestrial core formation mechanism. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	18
138	Fourâ€dimensional numerical modeling of crustal growth at active continental margins. Journal of Geophysical Research: Solid Earth, 2013, 118, 4682-4698.	3.4	18
139	The Influence of Curvature on Convection in a Temperatureâ€Dependent Viscosity Fluid: Implications for the 2â€Ð and 3â€Ð Modeling of Moons. Journal of Geophysical Research E: Planets, 2018, 123, 1863-1880.	3.6	18
140	Mantle convection interacting with magma oceans. Geophysical Journal International, 2020, 220, 1878-1892.	2.4	18
141	Variable dynamic styles of primordial heterogeneity preservation in the Earth's lower mantle. Earth and Planetary Science Letters, 2020, 536, 116160.	4.4	18
142	Convection under a lid of finite conductivity in wide aspect ratio models: Effect of continents on the wavelength of mantle flow. Journal of Geophysical Research, 2007, 112, .	3.3	17
143	Thermo-Chemical Structure of the Lower Mantle: Seismological Evidence and Consequences for Geodynamics. , 2007, , 293-320.		16
144	Mantle dynamics: The strong control of the spinel-perovskite transition at a depth of 660 km. Journal of Geodynamics, 1995, 20, 417-428.	1.6	14

#	Article	IF	CITATIONS
145	A particle-in-cell method for studying double-diffusive convection in the liquid layers of planetary interiors. Journal of Computational Physics, 2017, 346, 552-571.	3.8	14
146	Geoscience for Understanding Habitability in the Solar System and Beyond. Space Science Reviews, 2019, 215, 1.	8.1	14
147	Clobal mantle convection models produce transform offsets along divergent plate boundaries. Communications Earth & Environment, 2021, 2, .	6.8	14
148	Selfâ€consistent generation of singleâ€plume state for Enceladus using nonâ€Newtonian rheology. Journal of Geophysical Research E: Planets, 2014, 119, 416-439.	3.6	13
149	Plate bending, energetics of subduction and modeling of mantle convection: A boundary element approach. Earth and Planetary Science Letters, 2019, 515, 47-57.	4.4	13
150	Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle. Solid Earth, 2021, 12, 2087-2107.	2.8	13
151	Construction of semi-dynamic model of subduction zone with given plate kinematics in 3D sphere. Earth, Planets and Space, 2010, 62, 665-673.	2.5	12
152	Hemispheric Tectonics on Super-Earth LHS 3844b. Astrophysical Journal Letters, 2021, 908, L48.	8.3	12
153	Ariel planetary interiors White Paper. Experimental Astronomy, 2022, 53, 323-356.	3.7	12
154	Large Scale Three-Dimensional Boundary Element Simulation of Subduction. Lecture Notes in Computer Science, 2007, , 1122-1129.	1.3	12
155	Influence of the post-perovskite transition on thermal and thermo-chemical mantle convection. Geophysical Monograph Series, 2007, , 229-247.	0.1	11
156	Buoyant melting instabilities beneath extending lithosphere: 2. Linear analysis. Journal of Geophysical Research, 2008, 113, .	3.3	11
157	Small postâ€perovskite patches at the base of lower mantle primordial reservoirs: Insights from 2â€Đ numerical modeling and implications for ULVZs. Geophysical Research Letters, 2016, 43, 3215-3225.	4.0	11
158	Effects of the Compositional Viscosity Ratio on the Longâ€Term Evolution of Thermochemical Reservoirs in the Deep Mantle. Geophysical Research Letters, 2019, 46, 9591-9601.	4.0	11
159	Stag3D. , 2003, , 1524-1527.		11
160	Mantle Geochemical Geodynamics. , 2007, , 437-505.		10
161	The subduction dichotomy of strong plates and weak slabs. Solid Earth, 2017, 8, 339-350.	2.8	10
162	Do elasticity and a free surface affect lithospheric stresses caused by upper-mantle convection?. Geophysical Journal International, 2019, 216, 1740-1760.	2.4	9

#	Article	IF	CITATIONS
163	The Sensitivity of Core Heat Flux to the Modeling of Plate‣ike Surface Motion. Geochemistry, Geophysics, Geosystems, 2018, 19, 1282-1308.	2.5	8
164	Seafloor spreading evolution in response to continental growth. Geology, 2014, 42, 235-238.	4.4	7
165	On the self-regulating effect of grain size evolution in mantle convection models: application to thermochemical piles. Solid Earth, 2020, 11, 959-982.	2.8	7
166	A regime diagram of mobile lid convection with plate-like behavior. Physics of the Earth and Planetary Interiors, 2015, 241, 65-76.	1.9	6
167	Effects of Iron Spin Transition on the Structure and Stability of Large Primordial Reservoirs in Earth's Lower Mantle. Geophysical Research Letters, 2018, 45, 5918-5928.	4.0	5
168	The dynamics and impact of compositionally originating provinces in a mantle convection model featuring rheologically obtained plates. Geophysical Journal International, 2020, 220, 1700-1716.	2.4	5
169	Timescales of chemical equilibrium between the convecting solid mantle and over- and underlying magma oceans. Solid Earth, 2021, 12, 421-437.	2.8	5
170	Stag3DA code for modeling thermo-chemical multiphase convection in Earth's mantle. , 2003, , 1524-1527.		5
171	Protocore destabilization in planetary embryos formed by cold accretion: Feedbacks from non-Newtonian rheology and energy dissipation. Icarus, 2011, 213, 24-42.	2.5	4
172	Growing Understanding of Subduction Dynamics Indicates Need to Rethink Seismic Hazards. Eos, 2013, 94, 125-126.	0.1	4
173	Quantifying the Correlation Between Mobile Continents and Elevated Temperatures in the Subcontinental Mantle. Geochemistry, Geophysics, Geosystems, 2019, 20, 1358-1386.	2.5	4
174	Three-dimensional spherical shell convection at infinite Prandtl number using the †cubed sphere' method. , 2003, , 931-933.		4
175	Hadean/Eoarchean tectonics and mantle mixing induced by impacts: a three-dimensional study. Progress in Earth and Planetary Science, 2022, 9, .	3.0	4
176	The strength of the Iceland plume: A geodynamical scaling approach. Earth and Planetary Science Letters, 2020, 551, 116570.	4.4	3
177	Did the cessation of convection in Mercury's mantle allow for a dynamo supporting increase in heat loss from its core?. Earth and Planetary Science Letters, 2021, 571, 117108.	4.4	3
178	Influence of composition-dependent thermal conductivity on the long-term evolution of primordial reservoirs in Earth's lower mantle. Earth, Planets and Space, 2022, 74, .	2.5	3
179	Spurious Transitions in Convective Regime Due to Viscosity Clipping: Ramifications for Modeling Planetary Secular Cooling. Geochemistry, Geophysics, Geosystems, 2019, 20, 3450-3468.	2.5	2
180	Habitable Planets: Interior Dynamics and Long-Term Evolution. Proceedings of the International Astronomical Union, 2012, 8, 339-349.	0.0	1

#	Article	IF	CITATIONS
181	Contrasts in 2-D and 3-D system behaviour in the modelling of compositionally originating LLSVPs and a mantle featuring dynamically obtained plates. Geophysical Journal International, 2022, 230, 1751-1774.	2.4	1
182	Slow motion in the mantle. Physics World, 1996, 9, 33-38.	0.0	0
183	Boris Kaus receives 2012 Paul Niggli Medal. Swiss Journal of Geosciences, 2014, 107, 129-131.	1.2	0