
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9516132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Letters, 1992, 307, 287-293.	2.8	440
2	Expression of Multiple Isoforms of Nitric Oxide Synthase in Normal and Atherosclerotic Vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2479-2488.	2.4	426
3	Endothelin action on vascular smooth muscle involves inositol trisphosphate and calcium mobilization. Biochemical and Biophysical Research Communications, 1989, 158, 86-93.	2.1	351
4	The Cell-specific Expression of Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 2004, 279, 35087-35100.	3.4	230
5	VHL Promotes E2 Box-Dependent E-Cadherin Transcription by HIF-Mediated Regulation of SIP1 and Snail. Molecular and Cellular Biology, 2007, 27, 157-169.	2.3	230
6	Angiogenesis in Glioblastoma. New England Journal of Medicine, 2013, 369, 1561-1563.	27.0	227
7	The Expression of Endothelial Nitric-oxide Synthase Is Controlled by a Cell-specific Histone Code. Journal of Biological Chemistry, 2005, 280, 24824-24838.	3.4	195
8	Epigenetic Regulation of Vascular Endothelial Gene Expression. Circulation Research, 2008, 102, 873-887.	4.5	194
9	Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nature Medicine, 2006, 12, 1081-1087.	30.7	191
10	Characterization of the Human Endothelial Nitric-oxide Synthase Promoter. Journal of Biological Chemistry, 1999, 274, 3076-3093.	3.4	185
11	Regulation of endocytosis via the oxygen-sensing pathway. Nature Medicine, 2009, 15, 319-324.	30.7	178
12	Endothelial Nitric Oxide Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 405-412.	2.4	168
13	The Fgl2/fibroleukin prothrombinase contributes to immunologically mediated thrombosis in experimental and human viral hepatitis. Journal of Clinical Investigation, 2003, 112, 58-66.	8.2	159
14	Nitric Oxide Synthases: Gene Structure and Regulation. Advances in Pharmacology, 1995, 34, 71-90.	2.0	158
15	Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14448-14453.	7.1	137
16	Hypoxic Repression of Endothelial Nitric-oxide Synthase Transcription Is Coupled with Eviction of Promoter Histones. Journal of Biological Chemistry, 2010, 285, 810-826.	3.4	134
17	Long-Term Administration of the Histone Deacetylase Inhibitor Vorinostat Attenuates Renal Injury in Experimental Diabetes through an Endothelial Nitric Oxide Synthase-Dependent Mechanism. American Journal of Pathology, 2011, 178, 2205-2214.	3.8	134
18	Epigenetic Basis for the Transcriptional Hyporesponsiveness of the Human Inducible Nitric Oxide Synthase Gene in Vascular Endothelial Cells. Journal of Immunology, 2005, 175, 3846-3861.	0.8	129

#	Article	IF	CITATIONS
19	Hypoxia-inducible Expression of a Natural cis-Antisense Transcript Inhibits Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 2007, 282, 15652-15666.	3.4	127
20	Functional Importance of Dicer Protein in the Adaptive Cellular Response to Hypoxia. Journal of Biological Chemistry, 2012, 287, 29003-29020.	3.4	126
21	Post-transcriptional Regulation of Endothelial Nitric-oxide Synthase by an Overlapping Antisense mRNA Transcript. Journal of Biological Chemistry, 2004, 279, 37982-37996.	3.4	125
22	CD200 Is a Ligand for All Members of the CD200R Family of Immunoregulatory Molecules. Journal of Immunology, 2004, 172, 7744-7749.	0.8	123
23	Relative Reduction of Endothelial Nitric-Oxide Synthase Expression and Transcription in Atherosclerosis-Prone Regions of the Mouse Aorta and in an in Vitro Model of Disturbed Flow. American Journal of Pathology, 2007, 171, 1691-1704.	3.8	119
24	Nitric oxide signaling in hypoxia. Journal of Molecular Medicine, 2012, 90, 217-231.	3.9	113
25	Regulation of Toll-Like Receptor 4 Expression in the Lung Following Hemorrhagic Shock and Lipopolysaccharide. Journal of Immunology, 2002, 168, 5252-5259.	0.8	111
26	Molecular and Functional Analysis of the Human Prothrombinase Gene (HFGL2) and Its Role in Viral Hepatitis. American Journal of Pathology, 2000, 156, 1217-1225.	3.8	108
27	Epigenetics and Cardiovascular Disease. Canadian Journal of Cardiology, 2013, 29, 46-57.	1.7	108
28	Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. Journal of Clinical Investigation, 2005, 115, 3128-3139.	8.2	98
29	The CXCR4/CXCR7/SDF-1 pathway contributes to the pathogenesis of Shiga toxin–associated hemolytic uremic syndrome in humans and mice. Journal of Clinical Investigation, 2012, 122, 759-776.	8.2	86
30	Identification and characterization of endothelin binding sites in rat renal papillary and glomerular membranes. Biochemical and Biophysical Research Communications, 1989, 162, 130-137.	2.1	85
31	Nitric oxide synthases: biochemical and molecular regulation. Current Opinion in Nephrology and Hypertension, 1995, 4, 12-22.	2.0	81
32	A role of stochastic phenotype switching in generating mosaic endothelial cell heterogeneity. Nature Communications, 2016, 7, 10160.	12.8	81
33	Epigenetics in cardiovascular disease. Current Opinion in Cardiology, 2011, 26, 209-215.	1.8	76
34	Angiogenic patterning by STEEL, an endothelial-enriched long noncoding RNA. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2401-2406.	7.1	75
35	Localization of the Human Gene for Inducible Nitric Oxide Synthase (NOS2) to Chromosome 17q11.2-q12. Genomics, 1994, 19, 183-185.	2.9	74
36	Epigenetics of the vascular endothelium. Journal of Applied Physiology, 2010, 109, 916-926.	2.5	71

#	Article	IF	CITATIONS
37	Kinetic Analysis of a Unique Direct Prothrombinase,fgl2, and Identification of a Serine Residue Critical for the Prothrombinase Activity. Journal of Immunology, 2002, 168, 5170-5177.	0.8	69
38	In vivo expression profile of an endothelial nitric oxide synthase promoter-reporter transgene. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1352-H1361.	3.2	66
39	Genomic Characterization, Localization, and Functional Expression of FGL2, the Human Gene Encoding Fibroleukin: A Novel Human Procoagulant. Genomics, 2001, 71, 330-338.	2.9	66
40	Priming of hypoxia-inducible factor by neuronal nitric oxide synthase is essential for adaptive responses to severe anemia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17544-17549.	7.1	65
41	A mechanistic role for DNA methylation in endothelial cell (EC)-enriched gene expression: relationship with DNA replication timing. Blood, 2013, 121, 3531-3540.	1.4	57
42	Translational Regulation of Human Neuronal Nitric-oxide Synthase by an Alternatively Spliced 5′-Untranslated Region Leader Exon. Journal of Biological Chemistry, 2003, 278, 636-644.	3.4	56
43	Endothelial Nitric Oxide Synthase Gene Expression During Murine Embryogenesis. Circulation Research, 2008, 103, 24-33.	4.5	55
44	Culture-Modified Bone Marrow Cells Attenuate Cardiac and Renal Injury in a Chronic Kidney Disease Rat Model via a Novel Antifibrotic Mechanism. PLoS ONE, 2010, 5, e9543.	2.5	55
45	The Nucleocapsid Protein of Murine Hepatitis Virus Type 3 Induces Transcription of the Novel fgl2 Prothrombinase Gene. Journal of Biological Chemistry, 1999, 274, 9930-9936.	3.4	54
46	Active Stabilization of Human Endothelial Nitric Oxide Synthase mRNA by hnRNP E1 Protects against Antisense RNA and MicroRNAs. Molecular and Cellular Biology, 2013, 33, 2029-2046.	2.3	54
47	Abnormalities in villin gene expression and canalicular microvillus structure in progressive cholestatic liver disease of childhood. Lancet, The, 2003, 362, 1112-1119.	13.7	53
48	The fgl2 prothrombinase/fibroleukin gene is required for lipopolysaccharide-triggered abortions and for normal mouse reproduction. Molecular Human Reproduction, 2004, 10, 99-108.	2.8	48
49	Tyrosine phosphatase MEG2 modulates murine development and platelet and lymphocyte activation through secretory vesicle function. Journal of Experimental Medicine, 2005, 202, 1587-1597.	8.5	48
50	Differential HIF and NOS responses to acute anemia: defining organ-specific hemoglobin thresholds for tissue hypoxia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R13-R25.	1.8	48
51	Epigenetics in the Vascular Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2297-2306.	2.4	48
52	An Alternative Promoter of the Human Neuronal Nitric Oxide Synthase Gene Is Expressed Specifically in Leydig Cells. American Journal of Pathology, 2002, 160, 369-380.	3.8	47
53	Increased Body Lead Burden — Cause or Consequence of Chronic Renal Insufficiency?. New England Journal of Medicine, 2003, 348, 345-347.	27.0	47
54	Simvastatin Re-Couples Dysfunctional Endothelial Nitric Oxide Synthase in Experimental Subarachnoid Hemorrhage. PLoS ONE, 2011, 6, e17062.	2.5	47

#	Article	IF	CITATIONS
55	Renal Potassium Handling during States of Low Aldosterone Bio-Activity: A Method to Differentiate Renal and Non-Renal Causes. American Journal of Nephrology, 1987, 7, 360-366.	3.1	42
56	Nitric Oxide and Hypoxia Signaling. Vitamins and Hormones, 2014, 96, 161-192.	1.7	41
57	MAP Kinase Kinase 6–p38 MAP Kinase Signaling Cascade Regulates Cyclooxygenase-2 Expression in Cardiac Myocytes In Vitro and In Vivo. Circulation Research, 2003, 92, 757-764.	4.5	39
58	Enhanced Translation of Heme Oxygenase-2 Preserves Human Endothelial Cell Viability during Hypoxia. Journal of Biological Chemistry, 2010, 285, 9452-9461.	3.4	39
59	SDF-1/CXCR4 Signaling Preserves Microvascular Integrity and Renal Function in Chronic Kidney Disease. PLoS ONE, 2014, 9, e92227.	2.5	39
60	Role of the 3′-Untranslated Region of Human Endothelin-1 in Vascular Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 8655-8667.	3.4	38
61	Epigenetics of Cardiovascular Disease: A New â€~Beat' in Coronary Artery Disease. Medical Epigenetics, 2014, 2, 37-52.	262.3	36
62	Perturbations in paracrine control of the circulation: Role of the endothelial-derived vasomediators, endothelin-1 and nitric oxide. Microscopy Research and Technique, 2003, 60, 46-58.	2.2	35
63	Biologic control of the tumor necrosis factor and interleukin-1 signaling cascade. American Journal of Kidney Diseases, 1995, 25, 954-966.	1.9	34
64	Familial Risk of Preeclampsia in Newfoundland: A Population-Based Study. Journal of the American Society of Nephrology: JASN, 2002, 13, 1901-1906.	6.1	34
65	Shiga toxin-associated hemolytic uremic syndrome. Current Opinion in Nephrology and Hypertension, 2012, 21, 433-440.	2.0	34
66	Dicer Cuts the Kidney: Figure 1 Journal of the American Society of Nephrology: JASN, 2008, 19, 2043-2046.	6.1	31
67	Histone acetyltransferase 7 (KAT7)-dependent intragenic histone acetylation regulates endothelial cell gene regulation. Journal of Biological Chemistry, 2018, 293, 4381-4402.	3.4	31
68	New insights into Shiga toxin-mediated endothelial dysfunction in hemolytic uremic syndrome. Virulence, 2013, 4, 556-563.	4.4	29
69	Gene transcription of fgl2 in endothelial cells is controlled by Ets-1 and Oct-1 and requires the presence of both Sp1 and Sp3. FEBS Journal, 2003, 270, 2274-2286.	0.2	28
70	Nitric Oxide–Eluting Polyurethanes — Vascular Grafts of the Future?. New England Journal of Medicine, 2005, 353, 730-731.	27.0	28
71	c-Jun N-terminal Kinase-mediated Stabilization of Microsomal Prostaglandin E2 Synthase-1 mRNA Regulates Delayed Microsomal Prostaglandin E2 Synthase-1 Expression and Prostaglandin E2 Biosynthesis by Cardiomyocytes. Journal of Biological Chemistry, 2006, 281, 16443-16452.	3.4	27
72	Role of a distal enhancer in the transcriptional responsiveness of the human CD200 gene to interferon-Î ³ and tumor necrosis factor-α. Molecular Immunology, 2009, 46, 1951-1963.	2.2	27

#	Article	IF	CITATIONS
73	Extensive variation in the 5′-UTR of Dicer mRNAs influences translational efficiency. Biochemical and Biophysical Research Communications, 2005, 335, 643-650.	2.1	26
74	RNA Interference as Potential Therapy — Not So Fast. New England Journal of Medicine, 2006, 355, 953-954.	27.0	25
75	Effect of Disturbed Blood Flow on Endothelial Cell Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1806-1808.	2.4	25
76	Predicting Outcomes after Renal Transplantation — New Tools and Old Tools. New England Journal of Medicine, 2003, 349, 182-184.	27.0	23
77	Early outgrowth cells release soluble endocrine antifibrotic factors that reduce progressive organ fibrosis. Stem Cells, 2013, 31, 2408-2419.	3.2	23
78	Endothelial Tie2/Tek Ligands Angiopoietin-1 (ANGPT1) and Angiopoietin-2 (ANGPT2): Regional Localization of the Human Genes to 8q22.3–q23 and 8p23. Genomics, 1998, 48, 389-391.	2.9	20
79	Epigenetic Determinants of Flow-Mediated Vascular Endothelial Gene Expression. Hypertension, 2019, 74, 467-476.	2.7	19
80	Inflammation and Coagulation in the Cardiovascular System. Circulation Research, 2006, 99, 1152-1153.	4.5	18
81	Mesenchymal stromal/stem cells modulate response to experimental sepsis-induced lung injury via regulation of miR-27a-5p in recipient mice. Thorax, 2020, 75, 556-567.	5.6	17
82	hBRAG, a novel B cell lineage cDNA encoding a type II transmembrane glycoprotein potentially involved in the regulation of recombination activating gene 1 (RAG1). European Journal of Immunology, 1998, 28, 2839-2853.	2.9	16
83	Treatment of Anemia in Chronic Kidney Disease — Strategies Based on Evidence. New England Journal of Medicine, 2009, 361, 2089-2090.	27.0	15
84	LncRNAs and epigenetic regulation of vascular endothelium: genome positioning system and regulators of chromatin modifiers. Current Opinion in Pharmacology, 2019, 45, 72-80.	3.5	15
85	Pathophysiological Approach to Patients Presenting with Hypernatremia. American Journal of Nephrology, 1985, 5, 229-235.	3.1	14
86	Glutathione depletion inhibits lipopolysaccharide-induced intercellular adhesion molecule 1 synthesis. Free Radical Biology and Medicine, 2005, 38, 1333-1343.	2.9	14
87	Cloning and characterization of the human CD200 promoter region. Molecular Immunology, 2006, 43, 579-587.	2.2	14
88	Estimated GFR and Risk of Death — Is Cystatin C Useful?. New England Journal of Medicine, 2013, 369, 974-975.	27.0	14
89	Test for Chlorpropamide–Alcohol Flush Becomes Positive after Prolonged Chlorpropamide Treatment in Insulin-Dependent and Non–Insulin-Dependent Diabetics. New England Journal of Medicine, 1983, 309, 93-96.	27.0	13
90	Epigenetic determinants of cardiovascular gene expression: vascular endothelium. Epigenomics, 2016, 8, 959-979.	2.1	13

#	Article	IF	CITATIONS
91	Robust effects of genetic background on responses to subarachnoid hemorrhage in mice. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1942-1954.	4.3	13
92	Activated Protein C and Diabetic Nephropathy. New England Journal of Medicine, 2008, 358, 1628-1630.	27.0	12
93	Epigenetic Heterogeneity and Mitotic Heritability Prime Endothelial Cell Gene Induction. Journal of Immunology, 2020, 204, 1173-1187.	0.8	12
94	Bone Marrow Cell Therapies for Endothelial Repair and Their Relevance to Kidney Disease. Seminars in Nephrology, 2012, 32, 215-223.	1.6	11
95	c-Myb regulates transcriptional activation of miR-143/145 in vascular smooth muscle cells. PLoS ONE, 2018, 13, e0202778.	2.5	9
96	In Vivo Function of Flow-Responsive Cis-DNA Elements of eNOS Gene: A Role for Chromatin-Based Mechanisms. Circulation, 2021, 144, 365-381.	1.6	8
97	Gene Regulation in the Vascular Endothelium: Why Epigenetics Is Important for the Kidney. Seminars in Nephrology, 2012, 32, 176-184.	1.6	6
98	What lessons can we learn from NOS knockout mice in acute pulmonary disease? *. Critical Care Medicine, 2002, 30, 2143-2145.	0.9	6
99	Characterization of platelet-activating factor synthesis in glomerular endothelial cell lines. Kidney International, 1994, 46, 1404-1412.	5.2	5
100	Low-molecular-weight S-nitrosothiols and blood vessel injury. Journal of Clinical Investigation, 2007, 117, 2377-2380.	8.2	5
101	Epigenetic Regulation of the Vascular Endothelium by Angiogenic LncRNAs. Frontiers in Genetics, 2021, 12, 668313.	2.3	4
102	lons, lipids and peptides. Current Opinion in Nephrology and Hypertension, 1996, 5, 1-3.	2.0	1
103	The Vascular Endothelium: A Wonderful Network: Introduction. Seminars in Nephrology, 2012, 32, 143-144.	1.6	1
104	Gene Expression Analysis of Endothelial Cells Exposed to Shear Stress Using Multiple Parallel-plate Flow Chambers. Journal of Visualized Experiments, 2018, , .	0.3	1
105	RNA transfection is a versatile tool to investigate endothelin-1 posttranscriptional regulation. Experimental Biology and Medicine, 2006, 231, 704-8.	2.4	1
106	Milieu int??rieur and the kidney. Current Opinion in Nephrology and Hypertension, 1995, 4, 9-11.	2.0	0
107	Structural Characterization of Human Neuronal Nitric Oxide Synthase Gene: Methodologic Approach to a Complex Transcription Unit. Methods in Neurosciences, 1996, 31, 184-196.	0.5	0
108	Hemodilutional anemia increases nnos immunopositive cerebral cortical cells in rats. Canadian Journal of Anaesthesia, 2006, 53, 26368-26368.	1.6	0

#	Article	IF	CITATIONS
109	SC-34 * A NOVEL VEGF-RESPONSIVE lincRNA ORCHESTRATES GLIOMA STEM CELL-MEDIATED ANGIOGENESIS IN GLIOBLASTOMA. Neuro-Oncology, 2014, 16, v204-v204.	1.2	ο
110	Posttranscriptional adaptations of the vascular endothelium to hypoxia. Current Opinion in Hematology, 2015, 22, 243-251.	2.5	0