David J Mcinerney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9515889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robust Climate Policies Under Uncertainty: A Comparison of Robust Decision Making and Infoâ€Gap Methods. Risk Analysis, 2012, 32, 1657-1672.	2.7	221
2	Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resources Research, 2014, 50, 2350-2375.	4.2	130
3	Strengths and limitations of zircon Lu-Hf and O isotopes in modelling crustal growth. Lithos, 2016, 248-251, 175-192.	1.4	110
4	What are robust strategies in the face of uncertain climate threshold responses?. Climatic Change, 2012, 112, 547-568.	3.6	104
5	Improving probabilistic prediction of daily streamflow by identifying <scp>P</scp> areto optimal approaches for modeling heteroscedastic residual errors. Water Resources Research, 2017, 53, 2199-2239.	4.2	101
6	Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs*. Journal of Climate, 2014, 27, 1829-1844.	3.2	90
7	Evaluating the utility of dynamical downscaling in agricultural impacts projections. Proceedings of the United States of America, 2014, 111, 8776-8781.	7.1	68
8	Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions. Advances in Statistical Climatology, Meteorology and Oceanography, 2016, 2, 79-103.	0.9	53
9	A reactive-transport model for examining tectonic and climatic controls on chemical weathering and atmospheric CO2 consumption in granitic regolith. Chemical Geology, 2014, 365, 30-42.	3.3	52
10	Economically optimal risk reduction strategies in the face of uncertain climate thresholds. Climatic Change, 2008, 91, 29-41.	3.6	44
11	Carbon dioxide sequestration: how much and when?. Climatic Change, 2008, 88, 267-291.	3.6	39
12	The dynamics of learning about a climate threshold. Climate Dynamics, 2008, 30, 321-332.	3.8	37
13	Evaluating post-processing approaches for monthly and seasonal streamflow forecasts. Hydrology and Earth System Sciences, 2018, 22, 6257-6278.	4.9	34
14	State updating and calibration period selection to improve dynamic monthly streamflow forecasts for an environmental flow management application. Hydrology and Earth System Sciences, 2018, 22, 871-887.	4.9	30
15	Crustal thickening and clay: Controls on O isotope variation in global magmatism and siliciclastic sedimentary rocks. Earth and Planetary Science Letters, 2015, 412, 70-76.	4.4	28
16	A simplified approach to produce probabilistic hydrological model predictions. Environmental Modelling and Software, 2018, 109, 306-314.	4.5	25
17	Optimization of an Observing System Design for the North Atlantic Meridional Overturning Circulation. Journal of Atmospheric and Oceanic Technology, 2008, 25, 625-634.	1.3	22
18	The Importance of Spatiotemporal Variability in Irrigation Inputs for Hydrological Modeling of Irrigated Catchments. Water Resources Research, 2018, 54, 6792-6821.	4.2	21

DAVID J MCINERNEY

#	Article	IF	CITATIONS
19	Multiâ€ŧemporal Hydrological Residual Error Modeling for Seamless Subseasonal Streamflow Forecasting. Water Resources Research, 2020, 56, e2019WR026979.	4.2	21
20	Temperatures in transient climates: Improved methods for simulations with evolving temporal covariances. Annals of Applied Statistics, 2016, 10, .	1.1	16
21	Benefits of Explicit Treatment of Zero Flows in Probabilistic Hydrological Modeling of Ephemeral Catchments. Water Resources Research, 2019, 55, 11035-11060.	4.2	13
22	A robust approach for calibrating a daily rainfall-runoff model to monthly streamflow data. Journal of Hydrology, 2020, 591, 125129.	5.4	12
23	Achieving high-quality probabilistic predictions from hydrological models calibrated with a wide range of objective functions. Journal of Hydrology, 2021, 603, 126578.	5.4	9
24	A hybrid framework for quantifying the influence of data in hydrological model calibration. Journal of Hydrology, 2018, 561, 211-222.	5.4	7
25	Improving the Reliability of Subâ€Seasonal Forecasts of High and Low Flows by Using a Flowâ€Dependent Nonparametric Model. Water Resources Research, 2021, 57, e2020WR029317.	4.2	7
26	A generalised approach for identifying influential data in hydrological modelling. Environmental Modelling and Software, 2019, 111, 231-247.	4.5	5
27	Changes in Future Precipitation Mean and Variability across Scales. Journal of Climate, 2021, 34, 2741-2758.	3.2	5
28	Predicting wildfire induced changes to runoff: A review and synthesis of modeling approaches. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	6.5	5
29	A spatialâ€dependent model for climate emulation. Environmetrics, 2016, 27, 396-408.	1.4	4
30	A Hidden Climate Indices Modeling Framework for Multivariable Spaceâ€Time Data. Water Resources Research, 2022, 58, .	4.2	4
31	A second-order analytic solution for oscillatory wind-induced flow in an idealized shallow lake. Computers and Fluids, 2010, 39, 1500-1509.	2.5	2