George Coupland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/951520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science, 2007, 316, 1030-1033.	6.0	1,855
2	The CONSTANS gene of arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80, 847-857.	13.5	1,287
3	Distinct Roles of CONSTANS Target Genes in Reproductive Development of Arabidopsis. Science, 2000, 288, 1613-1616.	6.0	1,272
4	CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410, 1116-1120.	13.7	1,258
5	The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 2012, 13, 627-639.	7.7	1,200
6	Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering. Science, 2004, 303, 1003-1006.	6.0	1,089
7	Regulation and Identity of Florigen: FLOWERING LOCUS T Moves Center Stage. Annual Review of Plant Biology, 2008, 59, 573-594.	8.6	889
8	The late elongated hypocotyl Mutation of Arabidopsis Disrupts Circadian Rhythms and the Photoperiodic Control of Flowering. Cell, 1998, 93, 1219-1229.	13.5	805
9	Control of Flowering Time. Plant Cell, 2002, 14, S111-S130.	3.1	785
10	A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 1997, 386, 44-51.	13.7	760
11	The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes and Development, 2006, 20, 898-912.	2.7	744
12	GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO Journal, 1999, 18, 4679-4688.	3.5	691
13	CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development (Cambridge), 2004, 131, 3615-3626.	1.2	573
14	LHY and CCA1 Are Partially Redundant Genes Required to Maintain Circadian Rhythms in Arabidopsis. Developmental Cell, 2002, 2, 629-641.	3.1	572
15	Arabidopsis TFL2/LHP1 Specifically Associates with Genes Marked by Trimethylation of Histone H3 Lysine 27. PLoS Genetics, 2007, 3, e86.	1.5	537
16	SnapShot: Control of Flowering in Arabidopsis. Cell, 2010, 141, 550-550.e2.	13.5	529
17	CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis. Plant Cell, 2006, 18, 2971-2984.	3.1	512
18	Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Developmental Cell 2009 17, 75-86	3.1	493

#	Article	IF	CITATIONS
19	The Evolution of CONSTANS-Like Gene Families in Barley, Rice, and Arabidopsis. Plant Physiology, 2003, 131, 1855-1867.	2.3	463
20	Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO Journal, 2002, 21, 4327-4337.	3.5	432
21	Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO Journal, 2008, 27, 1277-1288.	3.5	424
22	Distinct Roles of GIGANTEA in Promoting Flowering and Regulating Circadian Rhythms in Arabidopsis. Plant Cell, 2005, 17, 2255-2270.	3.1	408
23	Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant Journal, 2002, 28, 619-631.	2.8	397
24	Mutagenesis of Plants Overexpressing CONSTANS Demonstrates Novel Interactions among Arabidopsis Flowering-Time Genes. Plant Cell, 2000, 12, 885-900.	3.1	360
25	Activation of floral meristem identity genes in Arabidopsis. Nature, 1996, 384, 59-62.	13.7	351
26	Effects of Genetic Perturbation on Seasonal Life History Plasticity. Science, 2009, 323, 930-934.	6.0	340
27	Mutations in the Arabidopsis Gene IMMUTANS Cause a Variegated Phenotype by Inactivating a Chloroplast Terminal Oxidase Associated with Phytoene Desaturation. Plant Cell, 1999, 11, 57-68.	3.1	326
28	PEP1 regulates perennial flowering in Arabis alpina. Nature, 2009, 459, 423-427.	13.7	325
29	The <i>Arabidopsis</i> B-Box Zinc Finger Family. Plant Cell, 2009, 21, 3416-3420.	3.1	306
30	EARLY FLOWERING4 Recruitment of EARLY FLOWERING3 in the Nucleus Sustains the <i>Arabidopsis</i> Circadian Clock. Plant Cell, 2012, 24, 428-443.	3.1	275
31	<i>cis</i> -Regulatory Elements and Chromatin State Coordinately Control Temporal and Spatial Expression of <i>FLOWERING LOCUS T</i> in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 1425-1440.	3.1	274
32	Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development (Cambridge), 2006, 133, 3213-3222.	1.2	272
33	The Molecular Basis of Diversity in the Photoperiodic Flowering Responses of Arabidopsis and Rice. Plant Physiology, 2004, 135, 677-684.	2.3	271
34	A Molecular Framework for Auxin-Mediated Initiation of Flower Primordia. Developmental Cell, 2013, 24, 271-282.	3.1	262
35	ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO Journal, 2000, 19, 4248-4256.	3.5	252
36	Induction of flowering by seasonal changes in photoperiod. EMBO Journal, 2004, 23, 1217-1222.	3.5	252

#	Article	IF	CITATIONS
37	A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2 Plant Cell, 1996, 8, 659-671.	3.1	248
38	The CCAAT binding factor can mediate interactions between CONSTANSâ€like proteins and DNA. Plant Journal, 2006, 46, 462-476.	2.8	247
39	Root-associated fungal microbiota of nonmycorrhizal <i>Arabis alpina</i> and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9403-E9412.	3.3	239
40	Shedding light on the circadian clock and the photoperiodic control of flowering. Current Opinion in Plant Biology, 2003, 6, 13-19.	3.5	228
41	Analysis of Natural Allelic Variation at Flowering Time Loci in the Landsberg erecta and Cape Verde Islands Ecotypes of Arabidopsis thaliana. Genetics, 1998, 149, 749-764.	1.2	225
42	Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant Journal, 1996, 9, 13-20.	2.8	222
43	ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria Plant Cell, 1997, 9, 717-730.	3.1	209
44	Mechanisms of Age-Dependent Response to Winter Temperature in Perennial Flowering of <i>Arabis alpina</i> . Science, 2013, 340, 1094-1097.	6.0	207
45	A Nuclear Protease Required for Flowering-Time Regulation in Arabidopsis Reduces the Abundance of SMALL UBIQUITIN-RELATED MODIFIER Conjugates. Plant Cell, 2003, 15, 2308-2319.	3.1	204
46	Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant Journal, 2001, 28, 225-235.	2.8	198
47	Genetic and spatial interactions between <i>FT</i> , <i>TSF</i> and <i>SVP</i> during the early stages of floral induction in Arabidopsis. Plant Journal, 2009, 60, 614-625.	2.8	194
48	Spatially distinct regulatory roles for gibberellins in the promotion of flowering of <i>Arabidopsis</i> under long photoperiods. Development (Cambridge), 2012, 139, 2198-2209.	1.2	193
49	The quest for florigen: a review of recent progress. Journal of Experimental Botany, 2006, 57, 3395-3403.	2.4	185
50	A Circadian Rhythm Set by Dusk Determines the Expression of <i>FT</i> Homologs and the Short-Day Photoperiodic Flowering Response in Pharbitis. Plant Cell, 2007, 19, 2988-3000.	3.1	181
51	Circadian Clock Proteins LHY and CCA1 Regulate SVP Protein Accumulation to Control Flowering in <i>Arabidopsis</i> . Plant Cell, 2008, 20, 2960-2971.	3.1	180
52	Analysis of the <i>Arabidopsis</i> Shoot Meristem Transcriptome during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich Repeat Protein That Promotes Flowering. Plant Cell, 2012, 24, 444-462.	3.1	178
53	Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Developmental Cell, 2016, 37, 254-266.	3.1	174
54	Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the <i>FT</i> paralogue <i>TSF</i> . Plant Journal, 2011, 65, 972-979.	2.8	172

#	Article	IF	CITATIONS
55	Plant development goes like clockwork. Trends in Genetics, 2010, 26, 296-306.	2.9	166
56	Phenotypic assay for excision of the maize controlling element <i>Ac</i> in tobacco. EMBO Journal, 1987, 6, 1547-1554.	3.5	159
57	Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify <i>Arabidopsis</i> proteins implicated in diverse biological processes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17415-17420.	3.3	159
58	Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta, 2015, 241, 271-284.	1.6	159
59	Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta, 2011, 233, 539-552.	1.6	158
60	Mutation in <i>TERMINAL FLOWER1</i> Reverses the Photoperiodic Requirement for Flowering in the Wild Strawberry <i>Fragaria vesca</i> Â Â. Plant Physiology, 2012, 159, 1043-1054.	2.3	158
61	Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants, 2015, 1, 14023.	4.7	156
62	Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Research, 2017, 27, 778-786.	2.4	155
63	Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biology, 2015, 16, 31.	3.8	150
64	Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nature Biotechnology, 2013, 31, 325-330.	9.4	149
65	Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nature Communications, 2014, 5, 3553.	5.8	143
66	Functional characterisation of <i>HvCO1</i> , the barley (<i>Hordeum vulgare</i>) flowering time ortholog of <i>CONSTANS</i> . Plant Journal, 2012, 69, 868-880.	2.8	136
67	Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biology, 2013, 14, R56.	3.8	134
68	Root microbiota dynamics of perennial <i>Arabis alpina</i> are dependent on soil residence time but independent of flowering time. ISME Journal, 2017, 11, 43-55.	4.4	133
69	SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the <i>Arabidopsis</i> shoot apex to regulate the floral transition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2760-9.	3.3	132
70	ALBINO3, an Arabidopsis Nuclear Gene Essential for Chloroplast Differentiation, Encodes a Chloroplast Protein That Shows Homology to Proteins Present in Bacterial Membranes and Yeast Mitochondria. Plant Cell, 1997, 9, 717.	3.1	131
71	Comparative Analysis of Flowering in Annual and Perennial Plants. Current Topics in Developmental Biology, 2010, 91, 323-348.	1.0	130
72	The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds insertion Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10370-10374.	3.3	129

#	Article	IF	CITATIONS
73	Time measurement and the control of flowering in plants. BioEssays, 2000, 22, 38-47.	1.2	127
74	Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to characterization of the floral stimulus. Plant, Cell and Environment, 2005, 28, 54-66.	2.8	126
75	Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis Plant Cell, 1992, 4, 583-595.	3.1	123
76	Response of plant development to environment: control of flowering by daylength and temperature. Current Opinion in Plant Biology, 2000, 3, 37-42.	3.5	122
77	Genetic and environmental control of flowering time in Arabidopsis. Trends in Genetics, 1995, 11, 393-397.	2.9	121
78	EARLY BOLTING IN SHORT DAYS Is Related to Chromatin Remodeling Factors and Regulates Flowering in Arabidopsis by Repressing FT. Plant Cell, 2003, 15, 1552-1562.	3.1	121
79	Genomeâ€scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant Journal, 2008, 56, 493-504.	2.8	120
80	Signalling for developmental plasticity. Trends in Plant Science, 2004, 9, 309-314.	4.3	117
81	The Arabidopsis <i>SOC1</i> â€like genes <i>AGL42</i> , <i>AGL71</i> and <i>AGL72</i> promote flowering in the shoot apical and axillary meristems. Plant Journal, 2011, 67, 1006-1017.	2.8	117
82	Aa <i>TFL1</i> Confers an Age-Dependent Response to Vernalization in Perennial <i>Arabis alpina</i> Â Â. Plant Cell, 2011, 23, 1307-1321.	3.1	117
83	Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9385-9388.	3.3	113
84	<i>miR824-</i> Regulated AGAMOUS-LIKE16 Contributes to Flowering Time Repression in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 2024-2037.	3.1	112
85	Analysis of Flowering Time Control in Arabidopsis by Comparison of Double and Triple Mutants. Plant Physiology, 2001, 126, 1085-1091.	2.3	111
86	The Control of Flowering Time and Floral Identity in Arabidopsis1. Plant Physiology, 1998, 117, 1-8.	2.3	110
87	Transposition of the maize transposable element Ac in Solanum tuberosum. Molecular Genetics and Genomics, 1988, 213, 285-290.	2.4	106
88	Chlamydomonas CONSTANS and the Evolution of Plant Photoperiodic Signaling. Current Biology, 2009, 19, 359-368.	1.8	106
89	The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. Journal of Experimental Botany, 2014, 65, 4731-4745.	2.4	106
90	The <scp>GI</scp> – <scp>CDF</scp> module of Arabidopsis affects freezing tolerance and growth as well as flowering. Plant Journal, 2015, 81, 695-706.	2.8	104

#	Article	IF	CITATIONS
91	Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Molecular Biology, 1998, 37, 763-772.	2.0	103
92	PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length. EMBO Journal, 2017, 36, 904-918.	3.5	103
93	Characterization of the maize transposable element <i>Ac</i> by internal deletions. EMBO Journal, 1988, 7, 3653-3659.	3.5	101
94	Photoperiodic and thermosensory pathways interact through <scp>CONSTANS</scp> to promote flowering at high temperature under short days. Plant Journal, 2016, 86, 426-440.	2.8	100
95	Competence to Flower: Age-Controlled Sensitivity to Environmental Cues. Plant Physiology, 2017, 173, 36-46.	2.3	100
96	DELLA-Interacting SWI3C Core Subunit of Switch/Sucrose Nonfermenting Chromatin Remodeling Complex Modulates Gibberellin Responses and Hormonal Cross Talk in Arabidopsis. Plant Physiology, 2013, 163, 305-317.	2.3	98
97	early in short days 4, a mutation inArabidopsisthat causes early flowering and reduces the mRNA abundance of the floral repressorFLC. Development (Cambridge), 2002, 129, 5349-5361.	1.2	95
98	Substrates Related to Chromatin and to RNA-Dependent Processes Are Modified by Arabidopsis SUMO Isoforms That Differ in a Conserved Residue with Influence on Desumoylation Â. Plant Physiology, 2009, 149, 1529-1540.	2.3	91
99	Flowering responses to seasonal cues: what's new?. Current Opinion in Plant Biology, 2014, 21, 120-127.	3.5	91
100	SUMO conjugation in plants. Planta, 2004, 220, 1-8.	1.6	86
101	Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO Journal, 1987, 6, 1547-54.	3.5	84
102	Plant Phase Transitions Make a SPLash. Cell, 2009, 138, 625-627.	13.5	80
103	Speeding Cis-Trans Regulation Discovery by Phylogenomic Analyses Coupled with Screenings of an Arrayed Library of Arabidopsis Transcription Factors. PLoS ONE, 2011, 6, e21524.	1.1	78
104	Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives. Nature Communications, 2014, 5, 4457.	5.8	72
105	early bolting in short days: An Arabidopsis Mutation That Causes Early Flowering and Partially Suppresses the Floral Phenotype of leafy. Plant Cell, 2001, 13, 1011-1024.	3.1	71
106	Phloem transport of flowering signals. Current Opinion in Plant Biology, 2008, 11, 687-694.	3.5	71
107	Arabidopsis A BOUT DE SOUFFLE, Which Is Homologous with Mammalian Carnitine Acyl Carrier, Is Required for Postembryonic Growth in the Light. Plant Cell, 2002, 14, 2161-2173.	3.1	69
108	REGIA, An EU Project on Functional Genomics of Transcription Factors fromArabidopsis thaliana. Comparative and Functional Genomics, 2002, 3, 102-108.	2.0	69

#	Article	IF	CITATIONS
109	The impact of chromatin regulation on the floral transition. Seminars in Cell and Developmental Biology, 2008, 19, 560-573.	2.3	69
110	PEP1 of Arabis alpina Is Encoded by Two Overlapping Genes That Contribute to Natural Genetic Variation in Perennial Flowering. PLoS Genetics, 2012, 8, e1003130.	1.5	69
111	A regulatory circuit conferring varied flowering response to cold in annual and perennial plants. Science, 2019, 363, 409-412.	6.0	69
112	Natural diversity in daily rhythms of gene expression contributes to phenotypic variation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 905-910.	3.3	68
113	A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between Arabidopsis thaliana ecotypes Col-0 and Landsberg erecta. Plant Methods, 2005, 1, 4.	1.9	67
114	Identification of <i>Arabidopsis</i> SUMO-interacting proteins that regulate chromatin activity and developmental transitions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19956-19961.	3.3	66
115	Characterization of the maize transposable element Ac by internal deletions. EMBO Journal, 1988, 7, 3653-9.	3.5	66
116	Transposons as tools for the isolation of plant genes. Trends in Biotechnology, 1991, 9, 31-37.	4.9	65
117	DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC Plant Biology, 2011, 11, 162.	1.6	65
118	Divergence of annual and perennial species in the Brassicaceae and the contribution of cisâ€acting variation at <i><scp>FLC</scp></i> orthologues. Molecular Ecology, 2017, 26, 3437-3457.	2.0	63
119	Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis. Plant Molecular Biology, 2003, 53, 687-701.	2.0	61
120	Phosphorylation of <scp>CONSTANS</scp> and its <scp>COP</scp> 1â€dependent degradation during photoperiodic flowering of Arabidopsis. Plant Journal, 2015, 84, 451-463.	2.8	59
121	The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana. BMC Plant Biology, 2020, 20, 53.	1.6	59
122	The Family of CONSTANS‣ike Genes in Physcomitrella patens. Plant Biology, 2005, 7, 266-275.	1.8	55
123	Demography and mating system shape the genome-wide impact of purifying selection in <i>Arabis alpina</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 816-821.	3.3	55
124	Antisense suppression of theArabidopsis PIF3gene does not affect circadian rhythms but causes early flowering and increasesFTexpression. FEBS Letters, 2004, 557, 259-264.	1.3	54
125	Prieurianin/endosidin 1 is an actinâ€stabilizing small molecule identified from a chemical genetic screen for circadian clock effectors in <i>Arabidopsis thaliana</i> . Plant Journal, 2012, 71, 338-352.	2.8	53
126	Genetics of homology-dependent gene silencing in Arabidopsis; a role for methylation. Plant Journal, 1997, 12, 791-804.	2.8	52

8

#	Article	IF	CITATIONS
127	Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1. Planta, 2011, 233, 63-73.	1.6	52
128	Floral induction in Arabidopsis thaliana by FLOWERING LOCUS T requires direct repression of BLADE-ON-PETIOLE genes by homeodomain protein PENNYWISE. Plant Physiology, 2015, 169, pp.00960.2015.	2.3	51
129	Chromosome walking with YAC clones in Arabidopsis: isolation of 1700 kb of contiguous DNA on chromosome 5, including a 300 kb region containing the flowering-time gene CO. Molecular Genetics and Genomics, 1993, 239, 145-157.	2.4	50
130	Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11037-E11046.	3.3	50
131	Evolution of <i>CONSTANS</i> Regulation and Function after Gene Duplication Produced a Photoperiodic Flowering Switch in the Brassicaceae. Molecular Biology and Evolution, 2015, 32, 2284-2301.	3.5	49
132	Functional Divergence of the Arabidopsis Florigen-Interacting bZIP Transcription Factors FD and FDP. Cell Reports, 2020, 31, 107717.	2.9	49
133	Possible role of EARLY FLOWERING 3 (ELF3) in clockâ€dependent floral regulation by SHORT VEGETATIVE PHASE (SVP) in <i> Arabidopsis thaliana</i> . New Phytologist, 2009, 182, 838-850.	3.5	48
134	Floral regulators FLC and SOC1 directly regulate expression of the B3-type transcription factor TARGET OF FLC AND SVP 1 at the Arabidopsis shoot apex via antagonistic chromatin modifications. PLoS Genetics, 2019, 15, e1008065.	1.5	48
135	The genetics of stamenoid petal production in oilseed rape (Brassica napus) and equivalent variation in Arabidopsis thaliana. Theoretical and Applied Genetics, 1997, 94, 731-736.	1.8	44
136	Evolution of the selfing syndrome: Anther orientation and herkogamy together determine reproductive assurance in a self-compatible plant. Evolution; International Journal of Organic Evolution, 2017, 71, 2206-2218.	1.1	44
137	Systematic analyses of the MIR172 family members of Arabidopsis define their distinct roles in regulation of APETALA2 during floral transition. PLoS Biology, 2021, 19, e3001043.	2.6	44
138	Ds elements on all five Arabidopsis chromosomes and assessment of their utility for transposon tagging. Plant Journal, 1997, 11, 145-148.	2.8	42
139	Elevated salicylic acid levels conferred by increased expression of <scp>ISOCHORISMATE SYNTHASE</scp> 1 contribute to hyperaccumulation of <scp>SUMO</scp> 1 conjugates in the Arabidopsis mutant <i>early in short days 4</i> . Plant Journal, 2014, 79, 206-219.	2.8	42
140	SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development. Plant Cell, 2015, 27, 1889-1906.	3.1	42
141	Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history. Journal of Experimental Botany, 2021, 72, 4-14.	2.4	41
142	A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytologist, 2022, 234, 494-512.	3.5	41
143	NATURAL VARIATION IN EPIGENETIC GENE REGULATION AND ITS EFFECTS ON PLANT DEVELOPMENTAL TRAITS. Evolution; International Journal of Organic Evolution, 2014, 68, 620-631.	1.1	38
144	Linking genes with ecological strategies in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2019, 70, 1141-1151.	2.4	37

#	Article	IF	CITATIONS
145	The Arabidopsis DNA Polymerase δ Has a Role in the Deposition of Transcriptionally Active Epigenetic Marks, Development and Flowering. PLoS Genetics, 2015, 11, e1004975.	1.5	36
146	Largeâ€scale adaptive differentiation in the alpine perennial herb <i><scp>A</scp>rabis alpina</i> . New Phytologist, 2015, 206, 459-470.	3.5	36
147	Analysis of clones carrying repeated DNA sequences in two YAC libraries of Arabidopsis thaliana DNA. Plant Journal, 1994, 5, 735-744.	2.8	34
148	The dynamics of <i><scp>FLOWERING LOCUS</scp> T</i> expression encodes longâ€day information. Plant Journal, 2015, 83, 952-961.	2.8	33
149	Analysis of the frequency of inheritance of transposed Ds elements in Arabidopsis after activation by a CaMV 35S promoter fusion to the Ac transposase gene. Molecular Genetics and Genomics, 1993, 241-241, 627-636.	2.4	31
150	Two SUMO Proteases SUMO PROTEASE RELATED TO FERTILITY1 and 2 Are Required for Fertility in Arabidopsis. Plant Physiology, 2017, 175, 1703-1719.	2.3	31
151	Unraveling the role of MADS transcription factor complexes in apple tree dormancy. New Phytologist, 2021, 232, 2071-2088.	3.5	31
152	Regulation of flowering by photoperiod in Arabidopsis. Plant, Cell and Environment, 1997, 20, 785-789.	2.8	30
153	Elevated Levels of MYB30 in the Phloem Accelerate Flowering in Arabidopsis through the Regulation of FLOWERING LOCUS T. PLoS ONE, 2014, 9, e89799.	1.1	30
154	Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. ELife, 2020, 9, .	2.8	30
155	early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy. Plant Cell, 2001, 13, 1011-24.	3.1	29
156	Genetic and molecular analysis of trichome development in <i>Arabis alpina</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12078-12083.	3.3	28
157	Mutations that delay flowering in Arabidopsis de-couple symptom response from cauliflower mosaic virus accumulation during infection. Molecular Plant Pathology, 2002, 3, 81-90.	2.0	26
158	Distinct Patterns of Genetic Variation Alter Flowering Responses of Arabidopsis Accessions to Different Daylengths. Plant Physiology, 2009, 152, 177-191.	2.3	26
159	Editorial: Recent Advances in Flowering Time Control. Frontiers in Plant Science, 2016, 7, 2011.	1.7	26
160	Analysis of TTG1 function in Arabis alpina. BMC Plant Biology, 2014, 14, 16.	1.6	25
161	The origin of transfer (oriT) of the conjugative plasmid R46: Characterization by deletion analysis and DNA sequencing. Molecular Genetics and Genomics, 1987, 208, 219-225.	2.4	24
162	Mutations in the Arabidopsis Gene IMMUTANS Cause a Variegated Phenotype by Inactivating a Chloroplast Terminal Oxidase Associated with Phytoene Desaturation. Plant Cell, 1999, 11, 57.	3.1	23

#	Article	IF	CITATIONS
163	A heat-shock promoter fusion to the Ac transposase gene drives inducible transposition of a Ds element during Arabidopsis embryo development. Plant Journal, 1994, 5, 755-764.	2.8	21
164	ZEITLUPE and FKF1: novel connections between flowering time and circadian clock control. Trends in Plant Science, 2000, 5, 409-411.	4.3	21
165	Diurnal and circadian expression profiles of glycerolipid biosynthetic genes in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2014, 9, e29715.	1.2	21
166	Floral homeotic proteins modulate the genetic program for leaf development to suppress trichome formation in flowers. Development (Cambridge), 2018, 145, .	1.2	21
167	The presence of enhancers adjacent to the Ac promoter increases the abundance of transposase mRNA and alters the timing of Ds excision in Arabidopsis. Plant Molecular Biology, 1994, 24, 789-798.	2.0	20
168	Revised nomenclature and functional overview of the ULP gene family of plant deSUMOylating proteases. Journal of Experimental Botany, 2018, 69, 4505-4509.	2.4	20
169	LEAFY blooms in aspen. Nature, 1995, 377, 482-483.	13.7	19
170	Distinct photoperiodic responses are conferred by the same genetic pathway in Arabidopsis and in rice. Trends in Plant Science, 2003, 8, 405-407.	4.3	18
171	Arabidopsisgenes that regulate flowering time in response to day-length. Seminars in Cell and Developmental Biology, 1996, 7, 419-425.	2.3	17
172	When Vernalization Makes Sense. Science, 2011, 331, 36-37.	6.0	17
173	Evening Expression of <i>Arabidopsis GIGANTEA</i> Is Controlled by Combinatorial Interactions among Evolutionarily Conserved Regulatory Motifs. Plant Cell, 2014, 26, 3999-4018.	3.1	17
174	Gibberellins Act Downstream of <i>Arabis</i> PERPETUAL FLOWERING1 to Accelerate Floral Induction during Vernalization. Plant Physiology, 2019, 180, 1549-1563.	2.3	17
175	Ubiquitin carboxyl-terminal hydrolases are required for period maintenance of the circadian clock at high temperature in Arabidopsis. Scientific Reports, 2019, 9, 17030.	1.6	17
176	<i>PERPETUAL FLOWERING2</i> coordinates the vernalization response and perennial flowering in <i>Arabis alpina</i> . Journal of Experimental Botany, 2019, 70, 949-961.	2.4	17
177	Mutagenesis of a Quintuple Mutant Impaired in Environmental Responses Reveals Roles for <i>CHROMATIN REMODELING4</i> in the Arabidopsis Floral Transition. Plant Cell, 2020, 32, 1479-1500.	3.1	17
178	Small Ubiquitin‣ike Modifier Conjugating Enzyme with Active Site Mutation Acts as Dominant Negative Inhibitor of SUMO Conjugation in <i>Arabidopsis</i> ^F . Journal of Integrative Plant Biology, 2013, 55, 75-82.	4.1	16
179	Pinpointing genes underlying annual/perennial transitions with comparative genomics. BMC Genomics, 2016, 17, 921.	1.2	16
180	The timing of <i>GIGANTEA</i> expression during day/night cycles varies with the geographical origin of Arabidopsis accessions. Plant Signaling and Behavior, 2017, 12, e1342026.	1.2	16

#	Article	IF	CITATIONS
181	Transposon Tagging with AC/Ds in Arabidopsis. , 1998, 82, 315-328.		14
182	The regulation of flowering time of Arabidopsis in response to daylength. Journal of Plant Research, 1998, 111, 271-275.	1.2	11
183	Regulation of flowering time: Arabidopsis as a model system to study genes that promote or delay flowering. Philosophical Transactions of the Royal Society B: Biological Sciences, 1995, 350, 27-34.	1.8	10
184	Circadian clock components in Arabidopsis II. LHY/CCA1 regulate the floral integrator gene SOC1 in both GI-dependent and -independent pathways. Plant Biotechnology, 2005, 22, 319-325.	0.5	10
185	MicroRNA172 controls inflorescence meristem size through regulation of APETALA2 in Arabidopsis. New Phytologist, 2022, 235, 356-371.	3.5	10
186	BOTANY: Plants See the Blue Light. Science, 1998, 279, 1323-1324.	6.0	9
187	The Root Growth-Regulating Brevicompanine Natural Products Modulate the Plant Circadian Clock. ACS Chemical Biology, 2017, 12, 1466-1471.	1.6	9
188	The Circadian Clock-Associated Small GTPase LIGHT INSENSITIVE PERIOD1 Suppresses Light-Controlled Endoreplication and Affects Tolerance to Salt Stress in Arabidopsis Â. Plant Physiology, 2012, 161, 278-290.	2.3	8
189	FLOWERING LOCUS C Isolation and Characterization: Two Articles That Opened Many Doors. Plant Cell, 2019, 31, 1190-1191.	3.1	8
190	Transposon tagging in Arabidopsis. , 1992, , 290-309.		8
191	Circadian clock components in Arabidopsis I. The terminal flower 1 enhances the early flowering phenotype of a mutant, Ihy cca1. Plant Biotechnology, 2005, 22, 311-317.	0.5	7
192	<i>Arabis alpina</i> : A perennial model plant for ecological genomics and lifeâ€history evolution. Molecular Ecology Resources, 2022, 22, 468-486.	2.2	7
193	Transposition and duplication of MADS-domain transcription factor genes in annual and perennial <i>Arabis</i> species modulates flowering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
194	Cytokininâ€promoted secondary growth and nutrient storage in the perennial stem zone of <i>Arabis alpina</i> . Plant Journal, 2021, 105, 1459-1476.	2.8	5
195	Cell signalling and gene regulation. Current Opinion in Plant Biology, 2005, 8, 457-461.	3.5	4
196	The Diversity and Significance of Flowering in Perennials. , 0, , 181-197.		4
197	Differential effects of light-to-dark transitions on phase setting in circadian expression among clock-controlled genes in Pharbitis nil. Plant Signaling and Behavior, 2018, 13, e1473686.	1.2	4

198 Studies on Transposable Element Ac of Zea Mays. , 1988, , 91-99.

3

#	Article	IF	CITATIONS
199	Structure and Function of the Maize Transposable Element Activator (AC). , 1991, , 285-298.		3
200	A Dissociation Insertion Causes a Semidominant Mutation That Increases Expression of TINY, an Arabidopsis Gene Related to APETALA2. Plant Cell, 1996, 8, 659.	3.1	2
201	Early Bolting in Short Days: An Arabidopsis Mutation That Causes Early Flowering and Partially Suppresses the Floral Phenotype of leafy. Plant Cell, 2001, 13, 1011.	3.1	2
202	Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development (Cambridge), 2006, 133, 4608-4608.	1.2	2
203	Isolation of novel gain- and loss-of-function alleles of the circadian clock gene LATE ELONGATED HYPOCOTYL (LHY) in Arabidopsis. Plant Biotechnology, 2007, 24, 457-465.	0.5	2
204	Control of perennial flowering and perenniality in Arabis alpina, a relative of Arabidopsis thaliana. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S195-S196.	0.8	2
205	Genetic and Molecular Analysis of Root Hair Development in Arabis alpina. Frontiers in Plant Science, 2021, 12, 767772.	1.7	2
206	Photoperidoic Responses and Regulation of Flowering. , 0, , 166-190.		1
207	The Plant CellIntroduces Breakthrough Reports: A New Forum for Cutting-Edge Plant Research. Plant Cell, 2015, , tpc.15.00862.	3.1	1
208	Elevated Levels of Activator Transposase mRNA Are Associated with High Frequencies of Dissociation Excision in Arabidopsis. Plant Cell, 1992, 4, 583.	3.1	0
209	Mutagenesis of Plants Overexpressing CONSTANS Demonstrates Novel Interactions among Arabidopsis Flowering-Time Genes. Plant Cell, 2000, 12, 885.	3.1	0
210	SynRg - Biotechnologie zur Steigerung von Ertrag und Ertragsstabilitänachwachsender Rohstoffe. Chemie-Ingenieur-Technik, 2010, 82, 1517-1518.	0.4	0
211	A tribute to Ko Shimamoto (1949–2013). Journal of Experimental Botany, 2014, 65, 6755-6759.	2.4	0
212	Comparing genetic diversity within a crop and its wild progenitor: a case study for barley , 2012, , 186-192.		0
213	Deeper Rooting: Pflanzenzüchtung und die Herausforderungen des Klimawandels. , 2015, , 153-166.		0
214	Sample Preparation of Arabidopsis thaliana Shoot Apices for Expression Studies of Photoperiod-Induced Genes. Methods in Molecular Biology, 2016, 1398, 81-91.	0.4	0
215	A Luciferase-Based Assay to Test Whether Gene Expression Responses to Environmental Inputs Are Temporally Restricted by the Circadian Clock. Methods in Molecular Biology, 2016, 1398, 93-106.	0.4	0
216	Mechanisms controlling time measurement in plants and their significance in natural populations. , 2016, , 187-208.		0

#	Article	IF	CITATIONS
217	THE MOLECULAR GENETICS OF PHOTO PERIODIC RESPONSES:COMPARISONS BETWEEN LONG-DAY AND SHORT-DAY SPECIES. , 2006, , 605-625.		0