frederic Dumur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9513654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	5,12-Dihydroindolo[3,2-a]carbazole: A promising scaffold for the design of visible light photoinitiators of polymerization. European Polymer Journal, 2022, 162, 110880.	5.4	28
2	The new LED-Sensitive photoinitiators of Polymerization: Copper complexes in free radical and cationic photoinitiating systems and application in 3D printing. European Polymer Journal, 2022, 162, 110885.	5.4	25
3	Enantioselective Radical Reactions Using Chiral Catalysts. Chemical Reviews, 2022, 122, 5842-5976.	47.7	136
4	Recent advances on coumarin-based photoinitiators of polymerization. European Polymer Journal, 2022, 163, 110962.	5.4	41
5	Sunlight Induced Polymerization Photoinitiated by Novel Push–Pull Dyes: Indaneâ€1,3â€Dione, 1Hâ€Cyclopenta[b]Naphthaleneâ€1,3(2H)â€Dione and 4â€Dimethoxyphenylâ€1â€Allylidene Derivatives. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	29
6	Recent advances on visible light Phenothiazine-based photoinitiators of polymerization. European Polymer Journal, 2022, 165, 110999.	5.4	40
7	Interpenetrating polymer network hydrogels using natural based dyes initiating systems: Antibacterial activity and 3D/4D performance. European Polymer Journal, 2022, 166, 111042.	5.4	29
8	Recent advances on visible light Triphenylamine-based photoinitiators of polymerization. European Polymer Journal, 2022, 166, 111036.	5.4	24
9	Safe near infrared light for fast polymers surface sterilization using organic heaters. Materials Chemistry Frontiers, 2022, 6, 1172-1179.	5.9	17
10	Investigation of two-photon polymerized microstructures using fluorescence lifetime measurements. Polymer Chemistry, 2022, 13, 2902-2906.	3.9	6
11	Development of Water-Soluble Type I Photoinitiators for Hydrogel Synthesis. Macromol, 2022, 2, 131-140.	4.4	3
12	Improving Orientation, Packing Density, and Molecular Arrangement in Self-Assembled Monolayers of Bianchoring Ferrocene–Triazole Derivatives by "Click―Chemistry. Langmuir, 2022, 38, 3585-3596.	3.5	6
13	Effect of Decarboxylation on the Photoinitiation Behavior of Nitrocarbazole-Based Oxime Esters. Macromolecules, 2022, 55, 2475-2485.	4.8	31
14	Recent advances on anthracene-based photoinitiators of polymerization. European Polymer Journal, 2022, 169, 111139.	5.4	14
15	5,12â€Dialkylâ€5,12â€dihydroindolo[3,2â€ <i>a</i>]carbazoleâ€Based Oximeâ€Esters for LED Photoinitiating Sys and Application on 3D Printing. Macromolecular Materials and Engineering, 2022, 307, .	stems	23
16	Recent advances on visible light Thiophene-based photoinitiators of polymerization. European Polymer Journal, 2022, 169, 111120.	5.4	15
17	Push-pull dyes based on Michler's aldehyde: Design and characterization of the optical and electrochemical properties. Dyes and Pigments, 2022, 202, 110278.	3.7	4
18	Zeoliteâ€Reinforced Interpenetrating Polymer Network Initiated by Chalcone Based Photoinitiating System and Their Application in 3D/4D Printing. Advanced Materials Technologies, 2022, 7, .	5.8	8

#	Article	IF	CITATIONS
19	Water-soluble/visible-light-sensitive naphthalimide derivative-based photoinitiating systems: 3D printing of antibacterial hydrogels. Polymer Chemistry, 2022, 13, 2918-2932.	3.9	20
20	Chemical engineering around the 5,12-dihydroindolo[3,2-a]carbazole scaffold: Fine tuning of the optical properties of visible light photoinitiators of polymerization. European Polymer Journal, 2022, 172, 111218.	5.4	9
21	Recent advances on visible light pyrrole-derived photoinitiators of polymerization. European Polymer Journal, 2022, 173, 111254.	5.4	19
22	Novel Copper Complexes as Visible Light Photoinitiators for the Synthesis of Interpenetrating Polymer Networks (IPNs). Polymers, 2022, 14, 1998.	4.5	12
23	Recent advances on carbazole-based oxime esters as photoinitiators of polymerization. European Polymer Journal, 2022, 175, 111330.	5.4	30
24	Photothermal activation in the near infrared range for 4-dimensional printing using relevant organic dyes. Additive Manufacturing, 2022, 58, 103031.	3.0	1
25	Photoinitiators of polymerization with reduced environmental impact: Nature as an unlimited and renewable source of dyes. European Polymer Journal, 2021, 142, 110109.	5.4	46
26	Allyloxy ketones as efficient photoinitiators with high migration stability in free radical polymerization and 3D printing. Dyes and Pigments, 2021, 185, 108900.	3.7	39
27	Synthesis, optical and electrochemical properties of a series of push-pull dyes based on the 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene)malononitrile (TCF) acceptor. Dyes and Pigments, 2021, 184, 108807.	3.7	23
28	Bis-chalcone derivatives derived from natural products as near-UV/visible light sensitive photoinitiators for 3D/4D printing. Materials Chemistry Frontiers, 2021, 5, 901-916.	5.9	59
29	NIR Organic Dyes as Innovative Tools for Reprocessing/Recycling of Plastics: Benefits of the Photothermal Activation in the Nearâ€Infrared Range. Advanced Functional Materials, 2021, 31, 2006324.	14.9	43
30	Recent advances on visible light photoinitiators of polymerization based on Indane-1,3-dione and related derivatives. European Polymer Journal, 2021, 143, 110178.	5.4	37
31	Boron Compounds as Additives for the Cationic Polymerization Using Coumarin Derivatives in Epoxy Silicones. Macromolecular Chemistry and Physics, 2021, 222, 2000404.	2.2	24
32	Characterization of polyoxometalate/polymer photoâ€composites: A toolbox for the photodegradation of organic pollutants. Journal of Polymer Science, 2021, 59, 153-169.	3.8	11
33	Synthesis, and the optical and electrochemical properties of a series of push–pull dyes based on the 4-(9-ethyl-9 <i>H</i> -carbazol-3-yl)-4-phenylbuta-1,3-dienyl donor. New Journal of Chemistry, 2021, 45, 5808-5821.	2.8	6
34	D–A dyads and A–D–A triads based on ferrocene: push–pull dyes with unusual behaviours in solution. New Journal of Chemistry, 2021, 45, 13475-13498.	2.8	6
35	Naphthalimideâ€Based Dyes as Photoinitiators under Visible Light Irradiation and their Applications: Photocomposite Synthesis, 3D printing and Polymerization in Water. ChemPhotoChem, 2021, 5, 476-490.	3.0	29
36	N-ethyl carbazole-1-allylidene-based push-pull dyes as efficient light harvesting photoinitiators for sunlight induced polymerization. European Polymer Journal, 2021, 147, 110331.	5.4	43

#	Article	IF	CITATIONS
37	Nearâ€Infrared PhotoInitiating Systems: Photothermal versus Triplet–Triplet Annihilationâ€Based Upconversion Polymerization. Macromolecular Rapid Communications, 2021, 42, e2100047.	3.9	35
38	3-Carboxylic Acid and Formyl-Derived Coumarins as Photoinitiators in Photo-Oxidation or Photo-Reduction Processes for Photopolymerization upon Visible Light: Photocomposite Synthesis and 3D Printing Applications. Molecules, 2021, 26, 1753.	3.8	27
39	Recent advances on ferrocene-based photoinitiating systems. European Polymer Journal, 2021, 147, 110328.	5.4	40
40	Design of photoinitiating systems based on the chalcone-anthracene scaffold for LED cationic photopolymerization and application in 3D printing. European Polymer Journal, 2021, 147, 110300.	5.4	53
41	In situ generation of Ag nanoparticles during photopolymerization by using newly developed dyesâ€based <scp>threeâ€component</scp> photoinitiating systems and the related <scp>3D</scp> printing applications and their shape change behavior. Journal of Polymer Science, 2021, 59, 843-859.	3.8	30
42	Polyoxometalate <scp>s</scp> /polymer composites for the photodegradation of <scp>bisphenolâ€A</scp> . Journal of Applied Polymer Science, 2021, 138, 50864.	2.6	21
43	Photopolymerization and 3D/4D applications using newly developed dyes: Search around the natural chalcone scaffold in photoinitiating systems. Dyes and Pigments, 2021, 188, 109213.	3.7	49
44	Nitro arbazole Based Oxime Esters as Dual Photo/Thermal Initiators for 3D Printing and Composite Preparation. Macromolecular Rapid Communications, 2021, 42, e2100207.	3.9	50
45	High-performance sunlight induced polymerization using novel push-pull dyes with high light absorption properties. European Polymer Journal, 2021, 151, 110410.	5.4	38
46	Recent Advances in bis-Chalcone-Based Photoinitiators of Polymerization: From Mechanistic Investigations to Applications. Molecules, 2021, 26, 3192.	3.8	48
47	Dyes with tunable absorption properties from the visible to the near infrared range: 2,4,5,7-Tetranitrofluorene (TNF) as a unique electron acceptor. Dyes and Pigments, 2021, 189, 109250.	3.7	2
48	Recent advances on squaraine-based photoinitiators of polymerization. European Polymer Journal, 2021, 150, 110427.	5.4	30
49	Concomitant initiation of radical and cationic polymerisations using new copper complexes as photoinitiators: Synthesis and characterisation of acrylate/epoxy interpenetrated polymer networks. European Polymer Journal, 2021, 152, 110457.	5.4	23
50	Organic dyeâ€based photoinitiating systems for visibleâ€lightâ€induced photopolymerization. Journal of Polymer Science, 2021, 59, 1338-1389.	3.8	49
51	Design of keto-coumarin based photoinitiator for Free Radical Photopolymerization: Towards 3D printing and photocomposites applications. European Polymer Journal, 2021, 154, 110559.	5.4	36
52	Nearâ€infrared light for polymer reâ€shaping and reâ€processing applications. Journal of Polymer Science, 2021, 59, 2193-2200.	3.8	23
53	New hybrid MOF/polymer composites for the photodegradation of organic dyes. European Polymer Journal, 2021, 154, 110560.	5.4	43
54	New hybrid perovskites/polymer composites for the photodegradation of organic dyes. European Polymer Journal, 2021, 157, 110641.	5.4	29

#	Article	IF	CITATIONS
55	Towards new NIR dyes for free radical photopolymerization processes. Beilstein Journal of Organic Chemistry, 2021, 17, 2067-2076.	2.2	14
56	Panchromatic Copper Complexes for Visible Light Photopolymerization. Photochem, 2021, 1, 167-189.	2.2	21
57	Water-Soluble Visible Light Sensitive Photoinitiating System Based on Charge Transfer Complexes for the 3D Printing of Hydrogels. Polymers, 2021, 13, 3195.	4.5	30
58	Recent advances on chalcone-based photoinitiators of polymerization. European Polymer Journal, 2021, 158, 110688.	5.4	49
59	LED and solar photodecomposition of erythrosine B and rose Bengal using H3PMo12O40/polymer photocatalyst. European Polymer Journal, 2021, 159, 110743.	5.4	19
60	Synthesis, optical and electrochemical properties of a series of push-pull dyes based on the 4,4-bis(4-methoxy phenyl)butadienyl donor. Dyes and Pigments, 2021, 194, 109552.	3.7	4
61	Recent advances on perylene-based photoinitiators of polymerization. European Polymer Journal, 2021, 159, 110734.	5.4	25
62	Click chemistry: An efficient tool to control the functionalization of metallic surfaces with alkyl chains possessing two reactive end groups. Applied Surface Science, 2021, 566, 150731.	6.1	2
63	New multifunctional benzophenone-based photoinitiators with high migration stability and their applications in 3D printing. Materials Chemistry Frontiers, 2021, 5, 1982-1994.	5.9	43
64	Naphthyl-Naphthalimides as High-Performance Visible Light Photoinitiators for 3D Printing and Photocomposites Synthesis. Catalysts, 2021, 11, 1269.	3.5	24
65	Substituent effects on the photoinitiation ability of coumarin-based oxime-ester photoinitiators for free radical photopolymerization. Materials Chemistry Frontiers, 2021, 5, 8361-8370.	5.9	42
66	Mutual influence of gold and silver nanoparticles on Tris-(2,2′bipyridine)-Ru(II) core complexes: Post-functionalization processes, optical and electrochemical investigations. Applied Surface Science, 2020, 499, 143847.	6.1	3
67	Recent advances on carbazole-based photoinitiators of polymerization. European Polymer Journal, 2020, 125, 109503.	5.4	81
68	Freeâ€radical polymerization upon nearâ€infrared light irradiation, merging photochemical and photothermal initiating methods. Journal of Polymer Science, 2020, 58, 300-308.	3.8	30
69	Design of Iodonium Salts for UV or Near-UV LEDs for Photoacid Generator and Polymerization Purposes. Molecules, 2020, 25, 149.	3.8	50
70	New push-pull dyes based on 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile: An amine-directed synthesis. Dyes and Pigments, 2020, 175, 108182.	3.7	16
71	Molecular engineering in 2D surface covalent organic frameworks: Towards next generation of molecular tectons - A mini review. Synthetic Metals, 2020, 260, 116265.	3.9	7
72	Novel Push–Pull Dyes Derived from 1H-cyclopenta[b]naphthalene-1,3(2H)-dione as Versatile Photoinitiators for Photopolymerization and Their Related Applications: 3D Printing and Fabrication of Photocomposites. Catalysts, 2020, 10, 1196.	3.5	38

#	Article	IF	CITATIONS
73	Recent advances on iron-based photoinitiators of polymerization. European Polymer Journal, 2020, 139, 110026.	5.4	25
74	Nearâ€infrared â€induced photothermal decomposition of charge transfer complexes: A new way to initiate thermal polymerization. Journal of Polymer Science, 2020, 58, 2134-2139.	3.8	6
75	Novel ketone derivative-based photoinitiating systems for free radical polymerization under mild conditions and 3D printing. Polymer Chemistry, 2020, 11, 5767-5777.	3.9	38
76	Mono vs. Difunctional Coumarin as Photoinitiators in Photocomposite Synthesis and 3D Printing. Catalysts, 2020, 10, 1202.	3.5	34
77	Novel D–π-A and A–π-D–π-A three-component photoinitiating systems based on carbazole/triphenylamino based chalcones and application in 3D and 4D printing. Polymer Chemistry, 2020, 11, 6512-6528.	3.9	50
78	Novel Photoinitiators Based on Benzophenoneâ€∓riphenylamine Hybrid Structure for LED Photopolymerization. Macromolecular Rapid Communications, 2020, 41, e2000460.	3.9	55
79	Recent Advances on Copper Complexes as Visible Light Photoinitiators and (Photo) Redox Initiators of Polymerization. Catalysts, 2020, 10, 953.	3.5	34
80	Donor–acceptor–donor structured thioxanthone derivatives as visible photoinitiators. Polymer Chemistry, 2020, 11, 7221-7234.	3.9	25
81	Design of ketone derivatives as highly efficient photoinitiators for free radical and cationic photopolymerizations and application in <scp>3D</scp> printing of composites. Journal of Polymer Science, 2020, 58, 3432-3445.	3.8	34
82	Ketone derivatives as photoinitiators for both radical and cationic photopolymerizations under visible LED and application in 3D printing. European Polymer Journal, 2020, 132, 109737.	5.4	33
83	Coumarins as Powerful Photosensitizers for the Cationic Polymerization of Epoxy-Silicones under Near-UV and Visible Light and Applications for 3D Printing Technology. Molecules, 2020, 25, 2063.	3.8	47
84	A monocomponent bifunctional benzophenone–carbazole type II photoinitiator for LED photoinitiating systems. Polymer Chemistry, 2020, 11, 3551-3556.	3.9	72
85	New Donor-Acceptor Stenhouse Adducts as Visible and Near Infrared Light Polymerization Photoinitiators. Molecules, 2020, 25, 2317.	3.8	20
86	In Silico Design of Nitrocoumarins as Near-UV Photoinitiators: Toward Interesting Opportunities in Composites and 3D Printing Technologies. ACS Applied Polymer Materials, 2020, 2, 2890-2901.	4.4	7
87	Thermal Initiators as Additives for Photopolymerization of Methacrylates upon Blue Light. Coatings, 2020, 10, 478.	2.6	10
88	Plasmon-triggered living photopolymerization for elaboration of hybrid polymer/metal nanoparticles. Materials Today, 2020, 40, 38-47.	14.2	16
89	Photoinitiators derived from natural product scaffolds: monochalcones in three-component photoinitiating systems and their applications in 3D printing. Polymer Chemistry, 2020, 11, 4647-4659.	3.9	72
90	On demand NIR activated photopolyaddition reactions. Polymer Chemistry, 2020, 11, 4250-4259.	3.9	39

#	Article	IF	CITATIONS
91	Coumarin Derivatives as Photoinitiators in Photo-Oxidation and Photo-Reduction Processes and a Kinetic Model for Simulations of the Associated Polymerization Profiles. ACS Applied Polymer Materials, 2020, 2, 2769-2780.	4.4	23
92	In-silico based development of photoinitiators for 3D printing and composites: Search on the coumarin scaffold. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112698.	3.9	10
93	Functionalization of Cold Nanoparticles by Inorganic Entities. Nanomaterials, 2020, 10, 548.	4.1	31
94	Monocomponent Photoinitiators based on Benzophenone-Carbazole Structure for LED Photoinitiating Systems and Application on 3D Printing. Polymers, 2020, 12, 1394.	4.5	50
95	High performance dyes based on triphenylamine, cinnamaldehyde and indane-1,3-dione derivatives for blue light induced polymerization for 3D printing and photocomposites. Dyes and Pigments, 2020, 182, 108580.	3.7	15
96	NIR Sensitizer Operating under Long Wavelength (1064Ânm) for Free Radical Photopolymerization Processes. Macromolecular Rapid Communications, 2020, 41, e2000289.	3.9	59
97	Light-Induced Thermal Decomposition of Alkoxyamines upon Infrared CO ₂ Laser: Toward Spatially Controlled Polymerization of Methacrylates in Laser Write Experiments. ACS Omega, 2020, 5, 3043-3046.	3.5	11
98	Recent advances on pyrene-based photoinitiators of polymerization. European Polymer Journal, 2020, 126, 109564.	5.4	67
99	Keto oumarin scaffold for photoinitiators for 3D printing and photocomposites. Journal of Polymer Science, 2020, 58, 1115-1129.	3.8	49
100	<i>In silico</i> rational design by molecular modeling of new ketones as photoinitiators in three-component photoinitiating systems: application in 3D printing. Polymer Chemistry, 2020, 11, 2230-2242.	3.9	71
101	Flavones as natural photoinitiators for light mediated freeâ€radical polymerization via light emitting diodes. Journal of Polymer Science, 2020, 58, 254-262.	3.8	25
102	Recent advances in organic dyes and fluorophores comprising a 1,2,3-triazole moiety. New Journal of Chemistry, 2020, 44, 3546-3561.	2.8	55
103	Free Radical Photopolymerization and 3D Printing Using Newly Developed Dyes: Indane-1,3-Dione and 1H-Cyclopentanaphthalene-1,3-Dione Derivatives as Photoinitiators in Three-Component Systems. Catalysts, 2020, 10, 463.	3.5	38
104	Recent advances on naphthalic anhydrides and 1,8-naphthalimide-based photoinitiators of polymerization. European Polymer Journal, 2020, 132, 109702.	5.4	62
105	Design of new phenothiazine derivatives as visible light photoinitiators. Polymer Chemistry, 2020, 11, 3349-3359.	3.9	32
106	High Performance Redox Initiating Systems Based on the Interaction of Silane with Metal Complexes: A Unique Platform for the Preparation of Composites. Molecules, 2020, 25, 1602.	3.8	5
107	Recent advances on push–pull organic dyes as visible light photoinitiators of polymerization. European Polymer Journal, 2020, 133, 109797.	5.4	73
108	Metalated porphyrins as versatile visible light and NIR photoinitiators of polymerization. European Polymer Journal, 2020, 139, 110019.	5.4	31

#	Article	IF	CITATIONS
109	Development of new highâ€performance visible light photoinitiators based on carbazole scaffold and their applications in 3d printing and photocomposite synthesis. Journal of Polymer Science Part A, 2019, 57, 2081-2092.	2.3	59
110	New 1,8-Naphthalimide Derivatives as Photoinitiators for Free-Radical Polymerization Upon Visible Light. Catalysts, 2019, 9, 637.	3.5	41
111	Unprecedented Nucleophilic Attack of Piperidine on the Electron Acceptor during the Synthesis of Pushâ€Pull Dyes by a <i>Knoevenagel</i> Reaction. Helvetica Chimica Acta, 2019, 102, e1900229.	1.6	21
112	Fillers as Heaters for Photothermal Polymerization upon NIR Light. Macromolecular Rapid Communications, 2019, 40, e1900495.	3.9	28
113	Recent Advances on Visible Light Metal-Based Photocatalysts for Polymerization under Low Light Intensity. Catalysts, 2019, 9, 736.	3.5	36
114	Coumarin derivatives as versatile photoinitiators for 3D printing, polymerization in water and photocomposite synthesis. Polymer Chemistry, 2019, 10, 872-884.	3.9	100
115	The Role of Surface Plasmon Resonance of Gold Nanoparticles for the Enhancement of Second Harmonic Generation of Nonlinear Chromophores. Inorganics, 2019, 7, 64.	2.7	2
116	New hybrid polyoxometalate/polymer composites for photodegradation of eosin dye. Journal of Polymer Science Part A, 2019, 57, 1538-1549.	2.3	26
117	Diethoxyacetate Salts as Coâ€initiators for Radical Photosensitive Resins: Towards Aromatic Amineâ€Free Systems?. ChemPhotoChem, 2019, 3, 1162-1170.	3.0	5
118	Ferrocene: An unrivaled electroactive building block for the design of push-pull dyes with near-infrared and infrared absorptions. Dyes and Pigments, 2019, 170, 107611.	3.7	29
119	Push-Pull Chromophores Based on the Naphthalene Scaffold: Potential Candidates for Optoelectronic Applications. Materials, 2019, 12, 1342.	2.9	29
120	Redox two-component initiated free radical and cationic polymerizations: Concepts, reactions and applications. Progress in Polymer Science, 2019, 94, 33-56.	24.7	56
121	Simultaneous initiation of radical and cationic polymerization reactions using the "G1―copper complex as photoredox catalyst: Applications of free radical/cationic hybrid photopolymerization in the composites and 3D printing fields. Progress in Organic Coatings, 2019, 132, 50-61.	3.9	58
122	Recent Advances on Metal-Based Near-Infrared and Infrared Emitting OLEDs. Molecules, 2019, 24, 1412.	3.8	84
123	Ferrocene-based (photo)redox polymerization under long wavelengths. Polymer Chemistry, 2019, 10, 1431-1441.	3.9	53
124	Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface. Materials, 2019, 12, 662.	2.9	16
125	Different NIR dye scaffolds for polymerization reactions under NIR light. Polymer Chemistry, 2019, 10, 6505-6514.	3.9	70
126	Phenothiazine derivatives as photoredox catalysts for cationic and radical photosensitive resins for 3D printing technology and photocomposite synthesis. Polymer Chemistry, 2019, 10, 6145-6156.	3.9	65

#	Article	IF	CITATIONS
127	Organische PhotosÃ ¤ ren―und Photobasenbildner für Polymerisationen: Jüngste Fortschritte und Herausforderungen. Angewandte Chemie, 2019, 131, 10518-10531.	2.0	11
128	Recent Advances and Challenges in the Design of Organic Photoacid and Photobase Generators for Polymerizations. Angewandte Chemie - International Edition, 2019, 58, 10410-10422.	13.8	132
129	Ï€-Conjugated Dithienophosphole Derivatives as High Performance Photoinitiators for 3D Printing Resins. Macromolecules, 2018, 51, 1811-1821.	4.8	53
130	Electrochromic behavior of drop-casted thin films combining a semi-conducting polymer mixed with a Keggin-type polyoxometalate. Materials Chemistry and Physics, 2018, 211, 312-320.	4.0	8
131	Metal Acetylacetonate–Bidentate Ligand Interaction (MABLI) as highly efficient free radical generating systems for polymer synthesis. Polymer Chemistry, 2018, 9, 1371-1378.	3.9	17
132	Enediynes bearing polyfluoroaryl sulfoxide as new antiproliferative agents with dual targeting of microtubules and DNA. European Journal of Medicinal Chemistry, 2018, 148, 306-313.	5.5	12
133	High Performance Near-Infrared (NIR) Photoinitiating Systems Operating under Low Light Intensity and in the Presence of Oxygen. Macromolecules, 2018, 51, 1314-1324.	4.8	152
134	Copper-Based (Photo)redox Initiating Systems as Highly Efficient Systems for Interpenetrating Polymer Network Preparation. Macromolecules, 2018, 51, 679-688.	4.8	39
135	A novel class of photoinitiators with a thermally activated delayed fluorescence (TADF) property. New Journal of Chemistry, 2018, 42, 8261-8270.	2.8	29
136	<i>N</i> -[2-(Dimethylamino)ethyl]-1,8-naphthalimide derivatives as photoinitiators under LEDs. Polymer Chemistry, 2018, 9, 994-1003.	3.9	69
137	Metal Acetylacetonate–Bidentate Ligand Interaction (MABLI) (Photo)activated Polymerization: Toward High Performance Amine-Free, Peroxide-Free Redox Radical (Photo)initiating Systems. Macromolecules, 2018, 51, 2706-2715.	4.8	13
138	Stable copper acetylacetonate-based oxidizing agents in redox (NIR photoactivated) polymerization: an opportunity for the one pot <i>grafting from</i> approach and an example on a 3D printed object. Polymer Chemistry, 2018, 9, 2173-2182.	3.9	24
139	Triphenylamine/oxadiazole hybrids differing by the substitution pattern: Influence on the electroluminescence properties of yellow and green emitting diodes. Synthetic Metals, 2018, 240, 21-29.	3.9	1
140	Carbazole-based compounds as photoinitiators for free radical and cationic polymerization upon near visible light illumination. Photochemical and Photobiological Sciences, 2018, 17, 578-585.	2.9	51
141	Naphthalimideâ€Tertiary Amine Derivatives as Blueâ€Lightâ€Sensitive Photoinitiators. ChemPhotoChem, 2018, 2, 481-489.	3.0	47
142	Surface-Supported Boronic Acid Condensation. , 2018, , 424-435.		0
143	Acridone derivatives as high performance visible light photoinitiators for cationic and radical photosensitive resins for 3D printing technology and for low migration photopolymer property. Polymer, 2018, 159, 47-58.	3.8	60
144	Organometallic vs organic photoredox catalysts for photocuring reactions in the visible region. Beilstein Journal of Organic Chemistry, 2018, 14, 3025-3046.	2.2	40

#	Article	IF	CITATIONS
145	Recent Advances on Nitrofluorene Derivatives: Versatile Electron Acceptors to Create Dyes Absorbing from the Visible to the Near and Far Infrared Region. Materials, 2018, 11, 2425.	2.9	20
146	Photoinduced Thermal Polymerization Reactions. Macromolecules, 2018, 51, 8808-8820.	4.8	63
147	New Synthetic Route to an Highly Efficient Photoredox Catalyst by Mechanosynthesis. ACS Omega, 2018, 3, 10938-10944.	3.5	17
148	Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs). Beilstein Journal of Organic Chemistry, 2018, 14, 282-308.	2.2	159
149	Thermally Activated Delayed Fluorescence Emitters for Deep Blue Organic Light Emitting Diodes: A Review of Recent Advances. Applied Sciences (Switzerland), 2018, 8, 494.	2.5	51
150	Organic Light-Emitting Diodes Based on Phthalimide Derivatives: Improvement of the Electroluminescence Properties. Applied Sciences (Switzerland), 2018, 8, 539.	2.5	5
151	Molecular adaptation in supramolecular self-assembly: brickwall-type phases of indacene-tetrone on silver surfaces. Chemical Communications, 2018, 54, 8510-8513.	4.1	6
152	Visible Light Chiral Photoinitiator for Radical Polymerization and Synthesis of Polymeric Films with Strong Chiroptical Activity. Macromolecules, 2018, 51, 5628-5637.	4.8	40
153	The Orientation of Silver Surfaces Drives the Reactivity and the Selectivity in Homo oupling Reactions. ChemPhysChem, 2018, 19, 1802-1808.	2.1	15
154	Peroxide-Free and Amine-Free Redox Free Radical Polymerization: Metal Acetylacetonates/Stable Carbonyl Compounds for Highly Efficient Synthesis of Composites. Macromolecules, 2018, 51, 6395-6404.	4.8	10
155	3-Hydroxyflavone and <i>N</i> -Phenylglycine in High Performance Photoinitiating Systems for 3D Printing and Photocomposites Synthesis. Macromolecules, 2018, 51, 4633-4641.	4.8	85
156	Zinc Tetraphenylporphyrin as High Performance Visible Light Photoinitiator of Cationic Photosensitive Resins for LED Projector 3D Printing Applications. Macromolecules, 2017, 50, 746-753.	4.8	99
157	Azahelicenes as visible light photoinitiators for cationic and radical polymerization: Preparation of photoluminescent polymers and use in high performance LED projector 3D printing resins. Journal of Polymer Science Part A, 2017, 55, 1189-1199.	2.3	82
158	Light-Emitting Electrochemical Cells. , 2017, , 327-361.		0
159	New violet to yellow light sensitive diketo pyrrolo–pyrrole photoinitiators: high performance systems with unusual bleaching properties and solubility in water. Polymer Chemistry, 2017, 8, 2028-2040.	3.9	27
160	Copper (Photo)redox Catalyst for Radical Photopolymerization in Shadowed Areas and Access to Thick and Filled Samples. Macromolecules, 2017, 50, 3761-3771.	4.8	66
161	Copper photoredox catalysts for polymerization upon near UV or visible light: structure/reactivity/efficiency relationships and use in LED projector 3D printing resins. Polymer Chemistry, 2017, 8, 568-580.	3.9	93
162	New copper(i) complex based initiating systems in redox polymerization and comparison with the amine/benzoyl peroxide reference. Polymer Chemistry, 2017, 8, 4088-4097.	3.9	46

#	Article	IF	CITATIONS
163	On-surface synthesis of aligned functional nanoribbons monitored by scanning tunnelling microscopy and vibrational spectroscopy. Nature Communications, 2017, 8, 14735.	12.8	24
164	Carbazole Scaffold Based Photoinitiator/Photoredox Catalysts: Toward New High Performance Photoinitiating Systems and Application in LED Projector 3D Printing Resins. Macromolecules, 2017, 50, 2747-2758.	4.8	121
165	Mechanosynthesis of a Copper complex for redox initiating systems with a unique near infrared light activation. Journal of Polymer Science Part A, 2017, 55, 3646-3655.	2.3	50
166	Mechanosynthesized copper(i) complex based initiating systems for redox polymerization: towards upgraded oxidizing and reducing agents. Polymer Chemistry, 2017, 8, 5884-5896.	3.9	46
167	Structural Effects in the Iridium Complex Series: Photoredox Catalysis and Photoinitiation of Polymerization Reactions under Visible Lights. Macromolecular Chemistry and Physics, 2017, 218, 1700192.	2.2	64
168	Design of novel photobase generators upon violet LEDs and use in photopolymerization reactions. Polymer, 2017, 124, 151-156.	3.8	17
169	Copper photoredox catalyst "G1†a new high performance photoinitiator for near-UV and visible LEDs. Polymer Chemistry, 2017, 8, 5580-5592.	3.9	62
170	Photopolymerization processes of thick films and in shadow areas: a review for the access to composites. Polymer Chemistry, 2017, 8, 7088-7101.	3.9	145
171	Carbazole Derivatives with Thermally Activated Delayed Fluorescence Property as Photoinitiators/Photoredox Catalysts for LED 3D Printing Technology. Macromolecules, 2017, 50, 4913-4926.	4.8	100
172	Novel Carbazole Skeleton-Based Photoinitiators for LED Polymerization and LED Projector 3D Printing. Molecules, 2017, 22, 2143.	3.8	60
173	Asymmetric Pentacenes for Solution-Processed Organic Field-Effect Transistors. Current Smart Materials, 2017, 2, .	0.5	0
174	Iron Complexes in Visible‣ightâ€Sensitive Photoredox Catalysis: Effect of Ligands on Their Photoinitiation Efficiencies. ChemCatChem, 2016, 8, 2227-2233.	3.7	50
175	Cationic Photoinitiators for Near UV and Visible LEDs: A Particular Insight into One omponent Systems. Macromolecular Chemistry and Physics, 2016, 217, 1214-1227.	2.2	27
176	A glance at violet LED sensitive photoinitiators based on the spiroxanthene scaffold. Journal of Applied Polymer Science, 2016, 133, .	2.6	11
177	Photocatalysts in Polymerization Reactions. ChemCatChem, 2016, 8, 1617-1631.	3.7	136
178	New role of aminothiazonaphthalimide derivatives: outstanding photoinitiators for cationic and radical photopolymerizations under visible LEDs. RSC Advances, 2016, 6, 48684-48693.	3.6	25
179	New carbazole-indan-1,3-dione- based host materials for phosphorescent organic light emitting diodes. Molecular Crystals and Liquid Crystals, 2016, 640, 145-151.	0.9	2
180	Perovskites as new radical photoinitiators for radical and cationic polymerizations. Tetrahedron, 2016, 72, 7686-7690.	1.9	18

#	Article	IF	CITATIONS
181	A New Highly Efficient Amine-Free and Peroxide-Free Redox System for Free Radical Polymerization under Air with Possible Light Activation. Macromolecules, 2016, 49, 6296-6309.	4.8	62
182	A novel naphthalimide scaffold based iodonium salt as a one-component photoacid/photoinitiator for cationic and radical polymerization under LED exposure. Polymer Chemistry, 2016, 7, 5873-5879.	3.9	75
183	Polymeric Photoinitiators: A New Search toward High Performance Visible Light Photoinitiating Systems. Macromolecular Chemistry and Physics, 2016, 217, 2145-2153.	2.2	21
184	Organic Electronics: An El Dorado in the Quest of New Photocatalysts for Polymerization Reactions. Accounts of Chemical Research, 2016, 49, 1980-1989.	15.6	81
185	Ironâ€Based Metalâ€Organic Frameworks (MOF) as Photocatalysts for Radical and Cationic Polymerizations under Near UV and Visible LEDs (385–405 nm). Macromolecular Chemistry and Physics, 2016, 217, 2534-2540.	2.2	50
186	Carbazole-Substituted Iridium Complex as a Solid State Emitter for Two-Photon Intravital Imaging. Inorganic Chemistry, 2016, 55, 9586-9595.	4.0	18
187	Synergetic effect of the epoxide functional groups in the photocatalyzed atom transfer radical copolymerization of glycidyl methacrylate. Polymer Chemistry, 2016, 7, 6084-6093.	3.9	18
188	Iron complexes as potential photocatalysts for controlled radical photopolymerizations: A tool for modifications and patterning of surfaces. Journal of Polymer Science Part A, 2016, 54, 702-713.	2.3	71
189	Aminothiazonaphthalic anhydride derivatives as photoinitiators for violet/blue LEDâ€Induced cationic and radical photopolymerizations and 3Dâ€Printing resins. Journal of Polymer Science Part A, 2016, 54, 1189-1196.	2.3	28
190	Visibleâ€lightâ€sensitive photoredox catalysis by iron complexes: Applications in cationic and radical polymerization reactions. Journal of Polymer Science Part A, 2016, 54, 2247-2253.	2.3	49
191	Heteroleptic iridium (III) complexes with three different ligands: Unusual triplet emitters for light-emitting electrochemical cells. Organic Electronics, 2016, 37, 24-34.	2.6	19
192	Bis(diphenylamino)naphthalene host materials: careful selection of the substitution pattern for the design of fully solution-processed triple-layered electroluminescent devices. RSC Advances, 2016, 6, 60565-60577.	3.6	7
193	Photoredox process induced polymerization reactions: Iridium complexes for panchromatic photoinitiating systems. Comptes Rendus Chimie, 2016, 19, 71-78.	0.5	46
194	Oligomeric Photocatalysts in Photoredox Catalysis: Toward High Performance and Low Migration Polymerization Photoinitiating Systems Macromolecules, 2016, 49, 2124-2134.	4.8	26
195	Novel naphthalimide–amine based photoinitiators operating under violet and blue LEDs and usable for various polymerization reactions and synthesis of hydrogels. Polymer Chemistry, 2016, 7, 418-429.	3.9	76
196	The carbazole-bound ferrocenium salt as a specific cationic photoinitiator upon near-UV and visible LEDs (365–405Ânm). Polymer Bulletin, 2016, 73, 493-507.	3.3	56
197	Panchromatic photoinitiators for radical, cationic and thiol-ene polymerization reactions: A search in the diketopyrrolopyrrole or indigo dye series. Materials Today Communications, 2015, 4, 101-108.	1.9	39
198	Specific cationic photoinitiators for near UV and visible LEDs: lodonium versus ferrocenium structures. Journal of Applied Polymer Science, 2015, 132, .	2.6	81

#	Article	IF	CITATIONS
199	Copper and iron complexes as visibleâ€lightâ€sensitive photoinitiators of polymerization. Journal of Polymer Science Part A, 2015, 53, 2673-2684.	2.3	71
200	Naphthalimide Derivatives: Substituent Effects on the Photoinitiating Ability in Polymerizations under Near UV, Purple, White and Blue LEDs (385, 395, 405, 455, or 470 nm). Macromolecular Chemistry and Physics, 2015, 216, 1782-1790.	2.2	52
201	Iron complexes as photoinitiators for radical and cationic polymerization through photoredox catalysis processes. Journal of Polymer Science Part A, 2015, 53, 42-49.	2.3	62
202	Naphthalimideâ€phthalimide derivative based photoinitiating systems for polymerization reactions under blue lights. Journal of Polymer Science Part A, 2015, 53, 665-674.	2.3	55
203	Structure/reactivity/photoinitiation ability relationships in novel benzo pyrazolo (or imidazo) isoquinolinone derivatives upon visible light <scp>LED</scp> s. Journal of Polymer Science Part A, 2015, 53, 1806-1815.	2.3	9
204	Naphthalic anhydride derivatives: Structural effects on their initiating abilities in radical and/or cationic photopolymerizations under visible light. Journal of Polymer Science Part A, 2015, 53, 2860-2866.	2.3	10
205	Poly(2-(N-carbazolyl)ethyl acrylate) as a host for high efficiency polymer light-emitting devices. Organic Electronics, 2015, 17, 377-385.	2.6	17
206	A benzophenoneâ€naphthalimide derivative as versatile photoinitiator of polymerization under near <scp>UV</scp> and visible lights. Journal of Polymer Science Part A, 2015, 53, 445-451.	2.3	95
207	Solution-processed blue phosphorescent OLEDs with carbazole-based polymeric host materials. Organic Electronics, 2015, 25, 21-30.	2.6	32
208	Carbazole-based polymers as hosts for solution-processed organic light-emitting diodes: Simplicity, efficacy. Organic Electronics, 2015, 25, 345-361.	2.6	126
209	Recent advances in organic light-emitting devices comprising copper complexes: A realistic approach for low-cost and highly emissive devices?. Organic Electronics, 2015, 21, 27-39.	2.6	148
210	Photocatalyzed Cu-Based ATRP Involving an Oxidative Quenching Mechanism under Visible Light. Macromolecules, 2015, 48, 1972-1980.	4.8	99
211	Wide bandgap iridium complexes varying by their ancillary ligands: Influence on their electroluminescence properties. Synthetic Metals, 2015, 204, 48-56.	3.9	4
212	LEDâ€Induced Polymerization (385, 405, and 455 nm) Using Starâ€Shaped Tris(4â€(thiophenâ€2â€yl)phenyl)am Derivatives as Lightâ€Harvesting Photoinitiators. Macromolecular Chemistry and Physics, 2015, 216, 218-227.	ine 2.2	23
213	Structure Design of Naphthalimide Derivatives: Toward Versatile Photoinitiators for Near-UV/Visible LEDs, 3D Printing, and Water-Soluble Photoinitiating Systems. Macromolecules, 2015, 48, 2054-2063.	4.8	172
214	Iodoniumâ€polyoxometalate and thianthreniumâ€polyoxometalate as new oneâ€component <scp>UV</scp> photoinitiators for radical and cationic polymerization. Journal of Polymer Science Part A, 2015, 53, 981-989.	2.3	32
215	Novel panchromatic photopolymerizable matrices: <i>N</i> , <i>N</i> '-dibutylquinacridone as an efficient and versatile photoinitiator. Journal of Polymer Science Part A, 2015, 53, 1719-1727.	2.3	35
216	Blue LED light-sensitive benzo pyrazolo (or imidazo) isoquinolinone derivatives in high-performance photoinitiating systems for polymerization reactions. Journal of Polymer Science Part A, 2015, 53, 567-575.	2.3	16

#	Article	IF	CITATIONS
217	Photoredox catalysis using a new iridium complex as an efficient toolbox for radical, cationic and controlled polymerizations under soft blue to green lights. Polymer Chemistry, 2015, 6, 613-624.	3.9	87
218	Green phosphorescent organic light-emitting devices based on wide bandgap host materials. Synthetic Metals, 2015, 199, 360-364.	3.9	9
219	Efficient blue green organic light-emitting devices based on a monofluorinated heteroleptic iridium(III) complex. Synthetic Metals, 2015, 199, 139-146.	3.9	16
220	Truxene: a promising scaffold for future materials. RSC Advances, 2015, 5, 3521-3551.	3.6	118
221	Amino and nitro substituted 2-amino-1H-benzo[de]isoquinoline-1,3(2H)-diones: as versatile photoinitiators of polymerization from violet-blue LED absorption to a panchromatic behavior. Polymer Chemistry, 2015, 6, 1171-1179.	3.9	47
222	Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions. Progress in Polymer Science, 2015, 41, 32-66.	24.7	463
223	Phosphorescent organic light-emitting devices (PhOLEDs) based on heteroleptic bis-cyclometalated complexes using acetylacetonate as the ancillary ligand. Synthetic Metals, 2014, 198, 131-136.	3.9	12
224	Michler's Ketone as an Interesting Scaffold for the Design of Highâ€Performance Dyes in Photoinitiating Systems Upon Visible Light. Macromolecular Chemistry and Physics, 2014, 215, 783-790.	2.2	34
225	White and Saturated Blue Phosphorescent OLED based on the Non-Emissive Homoleptic Complex Ir(ppz)3 as single active material. Optical Data Processing and Storage, 2014, 1, .	3.3	10
226	Photoinitiators based on a phenazine scaffold: High performance systems upon near-UV or visible LED (385, 395 and 405Ânm) irradiations. Polymer, 2014, 55, 2285-2293.	3.8	41
227	Chalcone derivatives as highly versatile photoinitiators for radical, cationic, thiol–ene and IPN polymerization reactions upon exposure to visible light. Polymer Chemistry, 2014, 5, 382-390.	3.9	81
228	Diketopyrrolopyrrole dyes: Structure/reactivity/efficiency relationship in photoinitiating systems upon visible lights. Polymer, 2014, 55, 746-751.	3.8	48
229	Highly Efficient Organic Lightâ€Emitting Devices Prepared with a Phosphorescent Heteroleptic Iridium (III) Complex Containing 7,8â€Benzoquinoline as the Cyclometalated Ligand. Advanced Optical Materials, 2014, 2, 262-266.	7.3	21
230	Perylene derivatives as photoinitiators in blue light sensitive cationic or radical curable films and panchromatic thiol-ene polymerizable films. European Polymer Journal, 2014, 53, 215-222.	5.4	62
231	The 1,3-bis(dicyanomethylidene)indane skeleton as a (photo) initiator in thermal ring opening polymerization at RT and radical or cationic photopolymerization. RSC Advances, 2014, 4, 15930.	3.6	32
232	Design of Novel Photoinitiators for Radical and Cationic Photopolymerizations under Near UV and Visible LEDs (385, 395, and 405 nm) Macromolecules, 2014, 47, 2811-2819.	4.8	98
233	Structural Effects in the Indanedione Skeleton for the Design of Low Intensity 300–500 nm Light Sensitive Initiators Macromolecules, 2014, 47, 26-34.	4.8	83
234	Triphenylamines and 1,3,4-oxadiazoles: a versatile combination for controlling the charge balance in organic electronics. New Journal of Chemistry, 2014, 38, 2204.	2.8	47

#	Article	IF	CITATIONS
235	Green light sensitive diketopyrrolopyrrole derivatives used in versatile photoinitiating systems for photopolymerizations. Polymer Chemistry, 2014, 5, 2293.	3.9	80
236	UV-violet-blue LED induced polymerizations: Specific photoinitiating systems at 365, 385, 395 and 405Ânm. Polymer, 2014, 55, 6641-6648.	3.8	54
237	Zinc complex based photoinitiating systems for acrylate polymerization under air; in situ formation of Zn-based fillers and composites. Polymer Chemistry, 2014, 5, 6569-6576.	3.9	14
238	Zinc complexes in OLEDs: An overview. Synthetic Metals, 2014, 195, 241-251.	3.9	76
239	Low-cost zinc complexes for white organic light-emitting devices. Thin Solid Films, 2014, 564, 351-360.	1.8	50
240	Phosphorescent organic light-emitting devices (PhOLEDs) based on 1-methyl-3-propyl-5-(2,4,5-trifluorophenyl)-1H-1,2,4-triazole as the cyclometalated ligand: Influence of the ancillary ligand on the emissive properties. Synthetic Metals, 2014, 195, 312-320.	3.9	8
241	Copper complexes: the effect of ligands on their photoinitiation efficiencies in radical polymerization reactions under visible light. Polymer Chemistry, 2014, 5, 6350-6357.	3.9	63
242	Trisâ€eyclometalated Iridium(III) Complexes with Three Different Ligands: a New Example with 2â€(2,4â€Difluorophenyl)pyridineâ€Based Complex. Helvetica Chimica Acta, 2014, 97, 939-956.	1.6	26
243	Julolidine or Fluorenone Based Push–Pull Dyes for Polymerization upon Soft Polychromatic Visible Light or Green Light Macromolecules, 2014, 47, 106-112.	4.8	91
244	Blue Light Sensitive Dyes for Various Photopolymerization Reactions: Naphthalimide and Naphthalic Anhydride Derivatives Macromolecules, 2014, 47, 601-608.	4.8	106
245	Photoluminescence of Zinc Complexes: Easily Tunable Optical Properties by Variation of the Bridge Between the Imido Groups of Schiff Base Ligands. European Journal of Inorganic Chemistry, 2014, 2014, 4186-4198.	2.0	60
246	End capped polyenic structures as visible light sensitive photoinitiators for polymerization of vinylethers. Dyes and Pigments, 2014, 105, 121-129.	3.7	36
247	Pure red phosphorescent OLED (PhOLED) based on a cyclometalated iridium complex with a dibenzoylmethane (dbm) moiety as the ancillary ligand. Thin Solid Films, 2014, 562, 530-537.	1.8	15
248	Concentration-insensitive phosphorescent organic light emitting devices (PhOLEDs) for easy manufacturing. Journal of Luminescence, 2014, 151, 34-40.	3.1	18
249	Copper Complexes in Radical Photoinitiating Systems: Applications to Free Radical and Cationic Polymerization upon Visible LEDs. Macromolecules, 2014, 47, 3837-3844.	4.8	150
250	Design of High Performance Photoinitiators at 385–405 nm: Search around the Naphthalene Scaffold. Macromolecules, 2014, 47, 973-978.	4.8	53
251	Metal and metal-free photocatalysts: mechanistic approach and application as photoinitiators of photopolymerization. Beilstein Journal of Organic Chemistry, 2014, 10, 863-876.	2.2	87
252	Photoinitiating systems of polymerization and in situ incorporation of metal nanoparticles into polymer matrices upon exposure to visible light: push–pull malonate and malononitrile based dyes. Polymer Chemistry, 2013, 4, 5679.	3.9	55

#	Article	IF	CITATIONS
253	Difunctional acridinediones as photoinitiators of polymerization under UV andÂvisible lights: Structural effects. Polymer, 2013, 54, 3458-3466.	3.8	57
254	Light-emitting electrochemical cells based on a solution-processed multilayered device and an anionic iridium (III) complex. Synthetic Metals, 2013, 177, 100-104.	3.9	23
255	New Thiols for Photoinitiatorâ€Free Thiolâ€Acrylate Polymerization. Macromolecular Chemistry and Physics, 2013, 214, 1302-1308.	2.2	14
256	Cationic and Thiol–Ene Photopolymerization upon Red Lights Using Anthraquinone Derivatives as Photoinitiators. Macromolecules, 2013, 46, 6744-6750.	4.8	91
257	Side functionalization of diboronic acid precursors for covalent organic frameworks. CrystEngComm, 2013, 15, 2067.	2.6	31
258	New insights into radical and cationic polymerizations upon visible light exposure: role of novel photoinitiator systems based on the pyrene chromophore. Polymer Chemistry, 2013, 4, 1625-1634.	3.9	77
259	Zinc-based metal complexes as new photocatalysts in polymerization initiating systems. European Polymer Journal, 2013, 49, 1040-1049.	5.4	78
260	Photochemical in situ elaboration of polyoxometalate (α-[SiMo12O40]4â^')/polymer hybrid materials. Polymer Chemistry, 2013, 4, 4526.	3.9	26
261	Synthesis and Characterization of [Mo3S4(NDABu)(HNDABu)2]3-and [Mo3S4(HNDAPr)3]2-Anions as Building Blocks for Organic-Inorganic Hybrid Solids. European Journal of Inorganic Chemistry, 2013, 2013, 1149-1156.	2.0	6
262	Red phosphorescent organic light-emitting diodes (PhOLEDs) based on a heteroleptic cyclometalated Iridium (III) complex. Journal of Luminescence, 2013, 143, 145-149.	3.1	38
263	Kegginâ€Type Polyoxometalate ([PMo ₁₂ O ₄₀] ^{3â^'}) in Radical Initiating Systems: Application to Radical and Cationic Photopolymerization Reactions. Macromolecular Chemistry and Physics, 2013, 214, 1749-1755.	2.2	16
264	Naphthalimide based methacrylated photoinitiators in radical and cationic photopolymerization under visible light. Polymer Chemistry, 2013, 4, 5440.	3.9	120
265	Blue and blue–green PhOLEDs prepared with neutral heteroleptic iridium(III) complexes comprising substituted pyridine-1,2,4-triazoles as the ancillary ligands. Synthetic Metals, 2013, 182, 13-21.	3.9	20
266	Multicolor Photoinitiators for Radical and Cationic Polymerization: Monofunctional vs Polyfunctional Thiophene Derivatives. Macromolecules, 2013, 46, 6786-6793.	4.8	80
267	Variations on the Benzophenone Skeleton: Novel High Performance Blue Light Sensitive Photoinitiating Systems. Macromolecules, 2013, 46, 7661-7667.	4.8	89
268	New chromone based photoinitiators for polymerization reactions under visible light. Polymer Chemistry, 2013, 4, 4234.	3.9	60
269	Panchromatic Photopolymerizable Cationic Films Using Indoline and Squaraine Dye Based Photoinitiating Systems. ACS Macro Letters, 2013, 2, 736-740.	4.8	81
270	Unprecedented combination of regioselective hydrodefluorination and ligand exchange reaction during the syntheses of tris-cyclometalated iridium(iii) complexes. Dalton Transactions, 2013, 42, 4479.	3.3	24

#	Article	IF	CITATIONS
271	New Cleavable Photoinitiator Architecture with Huge Molar Extinction Coefficients for Polymerization in the 340–450 nm Range Macromolecules, 2013, 46, 736-746.	4.8	78
272	Immobilization of Styrene‣ubstituted 1,3,4â€Oxadiazoles into Thermoreversible Luminescent Organogels and Their Unexpected Photocatalyzed Rearrangement. Chemistry - A European Journal, 2013, 19, 1373-1384.	3.3	12
273	Electrodeposited copolymer electrolyte into nanostructured titania electrodes for 3D Li-ion microbatteries. Comptes Rendus Chimie, 2013, 16, 80-88.	0.5	15
274	Photoactivated cyclization of aryl-containing enediynes coated gold nanoparticles: Enhancement of the DNA cleavage ability of enediynes. Colloids and Surfaces B: Biointerfaces, 2013, 112, 513-520.	5.0	11
275	Lightâ€Harvesting Organic Photoinitiators of Polymerization. Macromolecular Rapid Communications, 2013, 34, 239-245.	3.9	85
276	New pyridinium salts as versatile compounds for dye sensitized photopolymerization. European Polymer Journal, 2013, 49, 567-574.	5.4	54
277	Unexpected <i>Ritter</i> Reaction During Acidâ€Promoted 1,3â€Dithiolâ€2â€one Formation. Helvetica Chimica Acta, 2013, 96, 889-896.	1.6	3
278	New functionalized aromatic ketones as photoinitiating systems for near visible and visible light induced polymerizations. Polymer, 2013, 54, 2857-2864.	3.8	49
279	A Multicolor Photoinitiator for Cationic Polymerization and Interpenetrated Polymer Network Synthesis: 2,7â€Diâ€ <i>tert</i> â€butyldimethyldihydropyrene. Macromolecular Rapid Communications, 2013, 34, 1104-1109.	3.9	52
280	Greenâ€Lightâ€Induced Cationic Ring Opening Polymerization Reactions: Peryleneâ€3,4:9,10â€ <i>bis</i> (Dicarboximide) as Efficient Photosensitizers. Macromolecular Chemistry and Physics, 2013, 214, 1052-1060.	2.2	56
281	Push–pull (thio)barbituric acid derivatives in dye photosensitized radical and cationic polymerization reactions under 457/473 nm laser beams or blue LEDs. Polymer Chemistry, 2013, 4, 3866.	3.9	92
282	New Push–Pull Dyes Derived from Michler's Ketone For Polymerization Reactions Upon Visible Lights Macromolecules, 2013, 46, 3761-3770.	4.8	112
283	Design of new Type I and Type II photoinitiators possessing highly coupled pyrene–ketone moieties. Polymer Chemistry, 2013, 4, 2313.	3.9	91
284	Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions. Macromolecules, 2013, 46, 3332-3341.	4.8	95
285	Acridinediones: Effect of Substituents on Their Photoinitiating Abilities in Radical and Cationic Photopolymerization. Macromolecular Chemistry and Physics, 2013, 214, 2276-2282.	2.2	42
286	Redâ€Lightâ€Induced Cationic Photopolymerization: Perylene Derivatives as Efficient Photoinitiators. Macromolecular Rapid Communications, 2013, 34, 1452-1458.	3.9	77
287	Novel Highly Efficient Organophotocatalysts: Truxene–Acridineâ€1,8â€diones as Photoinitiators of Polymerization. Macromolecular Chemistry and Physics, 2013, 214, 2189-2201.	2.2	57
288	New core-pyrene π structure organophotocatalysts usable as highly efficient photoinitiators. Beilstein Journal of Organic Chemistry, 2013, 9, 877-890.	2.2	59

#	Article	IF	CITATIONS
289	Photoredox Catalysis for Polymerization Reactions. Chimia, 2012, 66, 439.	0.6	26
290	Iridium (III) complexes as promising emitters for solid-state Light-Emitting Electrochemical Cells (LECs). International Journal of Nanotechnology, 2012, 9, 377.	0.2	68
291	Cationic photosensitive formulations based on silyl radical chemistry for green and red diode laser exposure. Polymer Chemistry, 2012, 3, 1899-1902.	3.9	52
292	Sequential Linking To Control Growth of a Surface Covalent Organic Framework. Journal of Physical Chemistry C, 2012, 116, 4819-4823.	3.1	88
293	Iridium Photocatalysts in Free Radical Photopolymerization under Visible Lights. ACS Macro Letters, 2012, 1, 286-290.	4.8	136
294	Towards frozen organic PN junctions at room temperature using high-Tg polymeric electrolytes. Organic Electronics, 2012, 13, 1859-1864.	2.6	27
295	Highly conformal electrodeposition of copolymer electrolytes into titania nanotubes for 3D Li-ion batteries. Nanoscale Research Letters, 2012, 7, 349.	5.7	32
296	Dye photosensitized cationic ring-opening polymerization: Search for new dye skeletons. Polymer, 2012, 53, 4947-4954.	3.8	43
297	Trifunctional Photoinitiators Based on a Triazine Skeleton for Visible Light Source and UV LED Induced Polymerizations. Macromolecules, 2012, 45, 8639-8647.	4.8	81
298	Polyaromatic Structures as Organo-Photoinitiator Catalysts for Efficient Visible Light Induced Dual Radical/Cationic Photopolymerization and Interpenetrated Polymer Networks Synthesis. Macromolecules, 2012, 45, 4454-4460.	4.8	144
299	Photopolymerization of <i>N</i> -Vinylcarbazole Using Visible-Light Harvesting Iridium Complexes as Photoinitiators. Macromolecules, 2012, 45, 4134-4141.	4.8	133
300	A new organic–inorganic hybrid material based on a preformed chalcogenide building block and lanthanide. Inorganic Chemistry Communication, 2012, 18, 11-14.	3.9	5
301	Dithiolate-Appended Iridium(III) Complex with Dual Functions of Reducing and Capping Agent for the Design of Small-Sized Gold Nanoparticles. Journal of the American Chemical Society, 2011, 133, 6501-6504.	13.7	22
302	Iridium(iii) soft salts from dinuclear cationic and mononuclear anionic complexes for OLED devices. Chemical Communications, 2011, 47, 10698.	4.1	70
303	Design of blue or yellow emitting devices controlled by the deposition process of a cationic iridium (III) complex. Synthetic Metals, 2011, 161, 1934-1939.	3.9	24
304	Cationic iridium complex for the design of soft salt-based phosphorescent OLEDs and color-tunable light-emitting electrochemical cells. Organic Electronics, 2011, 12, 1683-1694.	2.6	67
305	Electropolymerization of copolymer electrolyte into titania nanotube electrodes for high-performance 3D microbatteries. Electrochemistry Communications, 2011, 13, 894-897.	4.7	52
306	Photochemical Electron Transfer Mediated Addition of Naphthylamine Derivatives to Electron-Deficient Alkenes. Journal of Organic Chemistry, 2011, 76, 7104-7118.	3.2	26

#	Article	IF	CITATIONS
307	Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bulletin, 2011, 44, 119-137.	2.4	87
308	Random Copolymers with Pendant Cationic Mixedâ€Ligand Terpyridineâ€Based Iridium (III) Complexes: Synthesis and Application in Lightâ€Emitting Devices. Macromolecular Chemistry and Physics, 2011, 212, 1616-1628.	2.2	22
309	Subtle Ligand Effects in Oxidative Photocatalysis with Iridium Complexes: Application to Photopolymerization. Chemistry - A European Journal, 2011, 17, 15027-15031.	3.3	162
310	Coordination chemistry approach for the end-to-end assembly of gold nanorods. Journal of Colloid and Interface Science, 2010, 349, 93-97.	9.4	22
311	Electropolymerization of Poly(para-phenylene)vinylene Films onto and Inside Porous Si layers of Different Types and Morphologies. Journal of the Electrochemical Society, 2010, 157, D648.	2.9	4
312	Direct Electropolymerization of Poly(para-phenylene)vinylene Films on Si and Porous Si. Journal of the Electrochemical Society, 2010, 157, H534.	2.9	7
313	Direct Electropolymerization of Copolymer Electrolyte into 3D Nano-Architectured Electrodes for High-Performance Hybrid Li-ion Macrobatteries. ECS Transactions, 2010, 33, 77-85.	0.5	Ο
314	(Invited) Electropolymerized Poly(para-phenylene)vinylene Films onto and Inside Porous Si. ECS Transactions, 2010, 28, 91-103.	0.5	0
315	Efficient Syntheses of Thiophenol Derivatives. Synlett, 2010, 2010, 2477-2481.	1.8	2
316	Tunable Optical Properties of Chromophores Derived from Oligo(<i>p</i> -phenylene vinylene). Organic Letters, 2010, 12, 2382-2385.	4.6	44
317	An Enantioselective Synthetic Route toward Second-Generation Light-Driven Rotary Molecular Motors. Journal of Organic Chemistry, 2010, 75, 825-838.	3.2	26
318	Approaches to Fused Tetrathiafulvalene/Tetracyanoquinodimethane Systems. European Journal of Organic Chemistry, 2009, 2009, 6341-6354.	2.4	10
319	Electrochemical, Linear Optical, and Nonlinear Optical Properties and Interpretation by Density Functional Theory Calculations of (4- <i>N,N</i> -Dimethylaminostyryl)-Pyridinium Pendant Group Associated with Polypyridinic Ligands and Respective Multifunctional Metal Complexes (Ru ^{II} or Zn ^{II}). Inorganic Chemistry, 2009, 48, 8120-8133.	4.0	36
320	Structural and Optical Properties of Electropolymerized Poly(para-phenylene)vinylene Films on Si and Porous Si. ECS Transactions, 2009, 25, 121-130.	0.5	1
321	Functionalization of Gold Nanoparticles by Iron(III) Complexes Derived from Schiff Base Ligands. European Journal of Inorganic Chemistry, 2008, 2008, 3614-3623.	2.0	20
322	New Chelating Stilbazonium-Like Dyes from Michler's Ketone. Organic Letters, 2008, 10, 321-324.	4.6	70
323	Facile synthesis and electrochemical properties of two trinuclear ruthenium complexes based on star-shaped terpyridine derivatives. New Journal of Chemistry, 2007, 31, 1806.	2.8	11
324	Synthesis of valuable terpyridine building blocks to generate a variety of metallodendrons by the convergent approach. Tetrahedron Letters, 2007, 48, 4143-4146.	1.4	13

#	Article	IF	CITATIONS
325	New Versatile Building Block for the Construction of Tetrathiafulvalene-Based Donorâ^'Acceptor Systems. Organic Letters, 2006, 8, 1307-1310.	4.6	37
326	A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy. Science, 2005, 310, 80-82.	12.6	412
327	Third-Order Nonlinear Optical Figure of Merits for Conjugated TTFâ^'Quinone Molecules. Journal of Physical Chemistry B, 2005, 109, 10179-10183.	2.6	65
328	Intramolecular electron transfer mediated by a tetrathiafulvalene (TTF) bridge. European Physical Journal Special Topics, 2004, 114, 509-510.	0.2	1
329	Novel Fused Dâ^'A Dyad and Aâ ''Dâ ''A Triad Incorporating Tetrathiafulvalene andp-Benzoquinone. Journal of Organic Chemistry, 2004, 69, 2164-2177.	3.2	104
330	Title is missing!. Angewandte Chemie, 2003, 115, 2871-2874.	2.0	27
331	Intramolecular Electron Transfer Mediated by a Tetrathiafulvalene Bridge in a Purely Organic Mixed-Valence System. Angewandte Chemie - International Edition, 2003, 42, 2765-2768.	13.8	100