Philip B Brewer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9513569/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Strigolactone inhibition of shoot branching. Nature, 2008, 455, 189-194.	27.8	1,910
2	Polar PIN Localization Directs Auxin Flow in Plants. Science, 2006, 312, 883-883.	12.6	754
3	Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20242-20247.	7.1	348
4	Strigolactone Acts Downstream of Auxin to Regulate Bud Outgrowth in Pea and Arabidopsis Â. Plant Physiology, 2009, 150, 482-493.	4.8	338
5	Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cellular and Molecular Life Sciences, 2006, 63, 2738-2754.	5.4	328
6	Diverse Roles of Strigolactones in Plant Development. Molecular Plant, 2013, 6, 18-28.	8.3	323
7	Molecular and cellular aspects of auxin-transport-mediated development. Trends in Plant Science, 2007, 12, 160-168.	8.8	304
8	Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea Â. Plant Physiology, 2012, 158, 1976-1987.	4.8	286
9	ARF GEF-Dependent Transcytosis and Polar Delivery of PIN Auxin Carriers in Arabidopsis. Current Biology, 2008, 18, 526-531.	3.9	250
10	Strigolactones: discovery of the elusive shoot branching hormone. Trends in Plant Science, 2009, 14, 364-372.	8.8	230
11	<i>LATERAL BRANCHING OXIDOREDUCTASE</i> acts in the final stages of strigolactone biosynthesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6301-6306.	7.1	219
12	Strigolactones Are Involved in Root Response to Low Phosphate Conditions in Arabidopsis Â. Plant Physiology, 2012, 160, 1329-1341.	4.8	191
13	The Arabidopsis Ortholog of Rice DWARF27 Acts Upstream of MAX1 in the Control of Plant Development by Strigolactones Â. Plant Physiology, 2012, 159, 1073-1085.	4.8	179
14	The trihelix family of transcription factors – light, stress and development. Trends in Plant Science, 2012, 17, 163-171.	8.8	165
15	PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development (Cambridge), 2004, 131, 4035-4045.	2.5	144
16	In situ hybridization technique for mRNA detection in whole mount Arabidopsis samples. Nature Protocols, 2006, 1, 1939-1946.	12.0	141
17	Cellular and Molecular Requirements for Polar PIN Targeting and Transcytosis in Plants. Molecular Plant, 2008, 1, 1056-1066.	8.3	124
18	Inositol Trisphosphate-Induced Ca2+ Signaling Modulates Auxin Transport and PIN Polarity. Developmental Cell. 2011, 20, 855-866.	7.0	121

PHILIP B BREWER

#	Article	IF	CITATIONS
19	Strigolactone Inhibition of Branching Independent of Polar Auxin Transport. Plant Physiology, 2015, 168, 1820-1829.	4.8	95
20	Polar Auxin Transport and Asymmetric Auxin Distribution. The Arabidopsis Book, 2007, 5, e0108.	0.5	79
21	In situ hybridization for mRNA detection in Arabidopsis tissue sections. Nature Protocols, 2006, 1, 1462-1467.	12.0	73
22	Strigolactones, how are they synthesized to regulate plant growth and development?. Current Opinion in Plant Biology, 2021, 63, 102072.	7.1	68
23	Hydroxyl carlactone derivatives are predominant strigolactones in <i>Arabidopsis</i> . Plant Direct, 2020, 4, e00219.	1.9	60
24	The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere, 2019, 9, 18-26.	3.0	59
25	Initial Bud Outgrowth Occurs Independent of Auxin Flow from Out of Buds. Plant Physiology, 2019, 179, 55-65.	4.8	56
26	Patterns of Variation Within Self-Incompatibility Loci. Molecular Biology and Evolution, 2003, 20, 1778-1794.	8.9	52
27	Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nature Communications, 2020, 11, 3508.	12.8	51
28	Generalist insects behave in a jasmonate-dependent manner on their host plants, leaving induced areas quickly and staying longer on distant parts. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122646.	2.6	47
29	Phloem Transport of the Receptor DWARF14 Protein Is Required for Full Function of Strigolactones. Plant Physiology, 2016, 172, 1844-1852.	4.8	32
30	Binding or Hydrolysis? How Does the Strigolactone Receptor Work?. Trends in Plant Science, 2019, 24, 571-574.	8.8	28
31	Diverse Roles of MAX1 Homologues in Rice. Genes, 2020, 11, 1348.	2.4	17
32	Plasticity of bud outgrowth varies at cauline and rosette nodes in <i>Arabidopsis thaliana</i> . Plant Physiology, 2022, 188, 1586-1603.	4.8	7
33	Plant Architecture: The Long and the Short of Branching in Potato. Current Biology, 2015, 25, R724-R725.	3.9	6
34	Emerging roles of strigolactones in plant responses toward biotic stress. , 2022, , 205-214.		2

3