Kaja K Selmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9513206/publications.pdf

Version: 2024-02-01

279798 265206 2,026 59 23 42 h-index citations g-index papers 65 65 65 4184 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies. American Journal of Human Genetics, 2014, 95, 360-370.	6.2	388
2	SLC9A6 Mutations Cause X-Linked Mental Retardation, Microcephaly, Epilepsy, and Ataxia, a Phenotype Mimicking Angelman Syndrome. American Journal of Human Genetics, 2008, 82, 1003-1010.	6.2	209
3	Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Review of Neurotherapeutics, 2019, 19, 1037-1050.	2.8	116
4	A Recurrent Missense Variant in AP2M1 Impairs Clathrin-Mediated Endocytosis and Causes Developmental and Epileptic Encephalopathy. American Journal of Human Genetics, 2019, 104, 1060-1072.	6.2	78
5	Aberrant Inclusion of a Poison Exon Causes Dravet Syndrome and Related SCN1A-Associated Genetic Epilepsies. American Journal of Human Genetics, 2018, 103, 1022-1029.	6.2	76
6	Effect of modified Atkins diet in adults with drugâ€resistant focal epilepsy: A randomized clinical trial. Epilepsia, 2018, 59, 1567-1576.	5.1	65
7	Good outcome in patients with early dietary treatment of <scp>GLUT</scp> â€1 deficiency syndrome: results from a retrospective Norwegian study. Developmental Medicine and Child Neurology, 2013, 55, 440-447.	2.1	56
8	A prospective study of the modified Atkins diet for adults with idiopathic generalized epilepsy. Epilepsy and Behavior, 2015, 53, 197-201.	1.7	51
9	CHD2 mutations in Lennox–Gastaut syndrome. Epilepsy and Behavior, 2014, 33, 18-21.	1.7	50
10	Spastic Paraplegia Type 7 Is Associated with Multiple Mitochondrial DNA Deletions. PLoS ONE, 2014, 9, e86340.	2.5	49
11	FILTUS: a desktop GUI for fast and efficient detection of disease-causing variants, including a novel autozygosity detector. Bioinformatics, 2016, 32, 1592-1594.	4.1	44
12	PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features. European Journal of Human Genetics, 2017, 25, 552-559.	2.8	42
13	Does ketogenic diet improve cognitive function in patients with GLUT1-DS? A 6- to 17-month follow-up study. Epilepsy and Behavior, 2014, 39, 111-115.	1.7	39
14	Pharmacokinetic interaction between modified Atkins diet and antiepileptic drugs in adults with drugâ€resistant epilepsy. Epilepsia, 2019, 60, 2235-2244.	5.1	38
15	Copy number variants in adult patients with Lennox–Gastaut syndrome features. Epilepsy Research, 2013, 105, 110-117.	1.6	35
16	Gain-of-function variants in <i>GABRD</i> reveal a novel pathway for neurodevelopmental disorders and epilepsy. Brain, 2022, 145, 1299-1309.	7.6	34
17	Pathogenic variants in <i>KCTD7</i> perturb neuronal K ⁺ fluxes and glutamine transport. Brain, 2016, 139, 3109-3120.	7.6	31
18	Inherited retinal disease in Norway – a characterization of current clinical and genetic knowledge. Acta Ophthalmologica, 2020, 98, 286-295.	1.1	29

#	Article	IF	CITATIONS
19	Prevalence of juvenile myoclonic epilepsy in people <30 years of age—A populationâ€based study in Norway. Epilepsia, 2017, 58, 105-112.	5.1	28
20	Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder. Nature Communications, 2021, 12, 2558.	12.8	28
21	StrÃ,mme Syndrome Is a Ciliary Disorder Caused by Mutations in <i>CENPF</i> . Human Mutation, 2016, 37, 359-363.	2.5	27
22	A mild form of Mucopolysaccharidosis IIIB diagnosed with targeted next-generation sequencing of linked genomic regions. European Journal of Human Genetics, 2012, 20, 58-63.	2.8	24
23	SCN1A mutation screening in adult patients with Lennox–Gastaut syndrome features. Epilepsy and Behavior, 2009, 16, 555-557.	1.7	23
24	Psychosocial complications in juvenile myoclonic epilepsy. Epilepsy and Behavior, 2019, 90, 122-128.	1.7	23
25	Novel <i>UCHL1</i> mutations reveal new insights into ubiquitin processing. Human Molecular Genetics, 2017, 26, ddw391.	2.9	22
26	Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. PLoS ONE, 2019, 14, e0226575.	2.5	22
27	Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7. Genetics in Medicine, 2020, 22, 1215-1226.	2.4	22
28	Autosomal dominant pericentral retinal dystrophy caused by a novel missense mutation in the <i>TOPORS</i> gene. Acta Ophthalmologica, 2010, 88, 323-328.	1.1	21
29	Biallelic <i>POLR3A</i> variants confirmed as a frequent cause of hereditary ataxia and spastic paraparesis. Brain, 2019, 142, e12-e12.	7.6	21
30	Trait impulsivity in Juvenile Myoclonic Epilepsy. Annals of Clinical and Translational Neurology, 2021, 8, 138-152.	3.7	21
31	Aicardi Syndrome: An Epidemiologic and Clinical Study in Norway. Pediatric Neurology, 2015, 52, 182-186.e3.	2.1	19
32	Generalized epilepsy in a family with basal ganglia calcifications and mutations in SLC20A2 and CHRNB2. European Journal of Medical Genetics, 2015, 58, 624-628.	1.3	19
33	Sex-specific disease modifiers in juvenile myoclonic epilepsy. Scientific Reports, 2022, 12, 2785.	3.3	19
34	Exome Sequencing Fails to Identify the Genetic Cause of Aicardi Syndrome. Molecular Syndromology, 2016, 7, 234-238.	0.8	16
35	GLUT1-deficiency syndrome: Report of a four-generation Norwegian family with a mild phenotype. Epilepsy and Behavior, 2017, 70, 1-4.	1.7	16
36	A novel somatic mutation in <i>GNB2</i> provides new insights to the pathogenesis of Sturgeâ€"Weber syndrome. Human Molecular Genetics, 2021, 30, 1919-1931.	2.9	15

#	Article	IF	CITATIONS
37	Friedreich ataxia in Norway – an epidemiological, molecular and clinical study. Orphanet Journal of Rare Diseases, 2015, 10, 108.	2.7	13
38	Biochemical and genetic characterization of an unusual mild PEX3- related Zellweger spectrum disorder. Molecular Genetics and Metabolism, 2017, 121, 325-328.	1.1	13
39	Genome-wide Linkage Analysis with Clustered SNP Markers. Journal of Biomolecular Screening, 2009, 14, 92-96.	2.6	12
40	A de novo 163Âkb interstitial 1q44 microdeletion in a boy with thin corpus callosum, psychomotor delay and seizures. European Journal of Medical Genetics, 2012, 55, 715-718.	1.3	11
41	Occurrence of GLUT1 deficiency syndrome in patients treated with ketogenic diet. Epilepsy and Behavior, 2014, 32, 76-78.	1.7	11
42	Prevalence of Renal Angiomyolipomas and Spontaneous Bleeding Related to Angiomyolipomas in Tuberous Sclerosis Complex Patients in France and Norway—a Questionnaire Study. Urology, 2017, 104, 70-76.	1.0	11
43	Substantial early changes in bone and calcium metabolism among adult pharmacoresistant epilepsy patients on a modified Atkins diet. Epilepsia, 2022, 63, 880-891.	5.1	11
44	Autosomal Recessive Cerebellar Atrophy and Spastic Ataxia in Patients With Pathogenic Biallelic Variants in GEMIN5. Frontiers in Cell and Developmental Biology, 2022, 10, 783762.	3.7	10
45	Trait impulsivity correlates with active myoclonic seizures in genetic generalized epilepsy. Epilepsy and Behavior, 2020, 112, 107260.	1.7	8
46	The effect of infliximab in patients with chronic low back pain and Modic changes (the BackToBasic) Tj ETQq0 Musculoskeletal Disorders, 2020, 21, 698.	0 0 rgBT /O 1.9	verlock 10 Tf : 8
47	Effects of modified Atkins diet on thyroid function in adult patients with pharmacoresistant epilepsy. Epilepsy and Behavior, 2020, 111, 107285.	1.7	7
48	Macrophage migration inhibitory factor: a potential biomarker for chronic low back pain in patients with Modic changes. RMD Open, 2021, 7, e001726.	3.8	7
49	Genomeâ€wide decrease in <scp>DNA</scp> methylation in adults with epilepsy treated with modified ketogenic diet: A prospective study. Epilepsia, 2022, 63, 2413-2426.	5.1	6
50	Identification and characterization of rare toll-like receptor 3 variants in patients with autoimmune Addison's disease. Journal of Translational Autoimmunity, 2019, 1, 100005.	4.0	5
51	Differential Glial Activation in Early Epileptogenesis—Insights From Cell-Specific Analysis of DNA Methylation and Gene Expression in the Contralateral Hippocampus. Frontiers in Neurology, 2020, 11, 573575.	2.4	5
52	Elevated hydroxycholesterols in Norwegian patients with hereditary spastic paraplegia SPG5. Journal of the Neurological Sciences, 2020, 419, 117211.	0.6	4
53	Coexistence of Congenital Adrenal Hyperplasia and Autoimmune Addison's Disease. Frontiers in Endocrinology, 2019, 10, 648.	3.5	2
54	Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis., 2019, 14, e0226575.		0

#	Article	IF	CITATIONS
55	Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. , 2019, 14, e0226575.		O
56	Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. , 2019, 14, e0226575.		O
57	Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. , 2019, 14, e0226575.		O
58	Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. , 2019, 14, e0226575.		0
59	Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. , 2019, 14, e0226575.		O