Chuixiu Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9512400/publications.pdf Version: 2024-02-01

Снитхит Нилис

#	Article	IF	CITATIONS
1	Electromembrane extraction. TrAC - Trends in Analytical Chemistry, 2017, 95, 47-56.	11.4	118
2	Inorganic molecular imprinted titanium dioxide photocatalyst: synthesis, characterization and its application for efficient and selective degradation of phthalate esters. Journal of Materials Chemistry, 2009, 19, 4843.	6.7	92
3	Electromembrane extraction–Recent trends and where to go. Journal of Pharmaceutical Analysis, 2017, 7, 141-147.	5.3	75
4	Development of a flat membrane based device for electromembrane extraction: A new approach for exhaustive extraction of basic drugs from human plasma. Journal of Chromatography A, 2014, 1326, 7-12.	3.7	74
5	Organic solvents in electromembrane extraction: recent insights. Reviews in Analytical Chemistry, 2016, 35, 169-183.	3.2	72
6	Electromembrane extraction for pharmaceutical and biomedical analysis $\hat{a} \in Quo vadis.$ Journal of Pharmaceutical and Biomedical Analysis, 2015, 113, 97-107.	2.8	65
7	Electromembrane extraction of polar basic drugs from plasma with pure bis(2-ethylhexyl) phosphite as supported liquid membrane. Analytica Chimica Acta, 2016, 934, 80-87.	5.4	52
8	Combination of Electromembrane Extraction and Liquid-Phase Microextraction in a Single Step: Simultaneous Group Separation of Acidic and Basic Drugs. Analytical Chemistry, 2015, 87, 6951-6957.	6.5	48
9	Exhaustive extraction of peptides by electromembrane extraction. Analytica Chimica Acta, 2015, 853, 328-334.	5.4	48
10	Electromembrane extraction with alkylated phosphites and phosphates as supported liquid membranes. Journal of Membrane Science, 2017, 526, 18-24.	8.2	45
11	Comprehensive study of buffer systems and local pH effects in electromembrane extraction. Analytica Chimica Acta, 2017, 984, 116-123.	5.4	43
12	Exhaustive and stable electromembrane extraction of acidic drugs from human plasma. Journal of Chromatography A, 2015, 1425, 81-87.	3.7	40
13	Mass transfer in electromembrane extraction—The link between theory and experiments. Journal of Separation Science, 2016, 39, 188-197.	2.5	39
14	In situ assembly of ZnO/graphene oxide on synthetic molecular receptors: Towards selective photoreduction of Cr(VI) via interfacial synergistic catalysis. Chemical Engineering Journal, 2021, 414, 128914.	12.7	37
15	Liquid-Phase Microextraction or Electromembrane Extraction?. Analytical Chemistry, 2019, 91, 8267-8273.	6.5	36
16	Investigation of alternative supported liquid membranes in electromembrane extraction of basic drugs from human plasma. Journal of Membrane Science, 2018, 548, 176-183.	8.2	31
17	Artificial Cytochrome c Mimics: Graphene Oxide–Fe(III) Complex-Coated Molecularly Imprinted Colloidosomes for Selective Photoreduction of Highly Toxic Pollutants. ACS Applied Materials & Interfaces, 2020, 12, 6615-6626.	8.0	25
18	Efficient discrimination and removal of phospholipids during electromembrane extraction from human plasma samples. Bioanalysis, 2017, 9, 631-641.	1.5	21

CHUIXIU HUANG

#	Article	IF	CITATIONS
19	Enzyme-like MOFs: synthetic molecular receptors with high binding capacity and their application in selective photocatalysis. Journal of Materials Chemistry A, 2020, 8, 25931-25940.	10.3	21
20	Hybrid breath figure method: A new insight in Petri dishes for cell culture. Journal of Colloid and Interface Science, 2019, 541, 114-122.	9.4	20
21	Electromembrane extraction of high level substances: A novel approach for selective recovery of templates in molecular imprinting. Journal of Membrane Science, 2018, 568, 30-39.	8.2	19
22	Lighting up forensic science by aggregation-induced emission: A review. Analytica Chimica Acta, 2021, 1155, 238119.	5.4	19
23	Impact of ion balance in electromembrane extraction. Analytica Chimica Acta, 2020, 1124, 129-136.	5.4	17
24	Electromembrane extraction of chlorprothixene, haloperidol and risperidone from whole blood and urine. Journal of Chromatography A, 2020, 1629, 461480.	3.7	16
25	Organic-solvent-free electromembrane extraction based on semi-interpenetrating polymer networks. Green Chemistry, 2021, 23, 1782-1793.	9.0	16
26	Sensitive determination of illicit drugs in wastewater using enrichment bag-based liquid-phase microextraction and liquid-chromatography tandem mass spectrometry. Journal of Chromatography A, 2022, 1661, 462684.	3.7	16
27	A specific, highly enriching and "green―method for hollow fiber liquid phase microextraction of ionizable pharmaceuticals from fish tissue. Analytical Methods, 2014, 6, 6031-6037.	2.7	15
28	Unidirectional solute transfer using a Janus membrane. Journal of Membrane Science, 2020, 596, 117723.	8.2	15
29	Functional materials and chemicals in electromembrane extraction. TrAC - Trends in Analytical Chemistry, 2022, 150, 116574.	11.4	15
30	Determination of Barbiturates in Biological Specimens by Flat Membrane-Based Liquid-Phase Microextraction and Liquid Chromatography-Mass Spectrometry. Molecules, 2019, 24, 1494.	3.8	13
31	Electromembrane extraction of barbiturates using tributyl phosphate as an efficient supported liquid membrane. Analytica Chimica Acta, 2020, 1129, 118-125.	5.4	13
32	Fundamentals, operations and applications of electromembrane extraction: An overview of reviews. Microchemical Journal, 2022, 181, 107751.	4.5	13
33	Electromembrane extraction of aristolochic acids: New insights in separation of bioactive ingredients of traditional Chinese medicines. Journal of Chromatography A, 2019, 1608, 460424.	3.7	10
34	Effect of sample matrices on supported liquid membrane: Efficient electromembrane extraction of cathinones from biological samples. Talanta, 2022, 240, 123175.	5.5	10
35	Specific "light-up―sensor made easy: An aggregation induced emission monomer for molecular imprinting. Biosensors and Bioelectronics, 2022, 205, 114113.	10.1	9
36	Blood Group Antigen Shielding Facilitated by Selective Cell Surface Engineering. ACS Applied Materials & Interfaces, 2020, 12, 22426-22432.	8.0	7

CHUIXIU HUANG

#	Article	IF	CITATIONS
37	Removal of Polymerase Chain Reaction Inhibitors by Electromembrane Extraction. Analytical Chemistry, 2021, 93, 11488-11496.	6.5	6
38	Ultrasound-assisted electromembrane extraction with supported semi-liquid membrane. Analytica Chimica Acta, 2021, 1184, 339038.	5.4	6
39	Versatile Integration of Liquid-Phase Microextraction and Fluorescent Aptamer Beacons: A Synergistic Effect for Bioanalysis. Analytical Chemistry, 2021, 93, 14323-14333.	6.5	4
40	Recent sample pretreatment methods for determination of selective serotonin reuptake inhibitors (SSRIs) in biological samples. Journal of Pharmaceutical and Biomedical Analysis, 2021, 206, 114364.	2.8	3
41	Successive liquid-phase microextraction of acidic and basic analytes. Analytica Chimica Acta, 2022, 1192, 339335.	5.4	2
42	Multi-extraction system with identical supported semi-liquid membrane: Enhanced stability for coextraction of acidic and basic drugs. Talanta, 2022, 246, 123485.	5.5	2
43	Generation of Janus Molecularly Imprinted Polymer Particles. Methods in Molecular Biology, 2017, 1575, 353-362.	0.9	0