
Stefanie Dedeurwaerdere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9512299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuronuclear Assessment of Patients With Epilepsy. Seminars in Nuclear Medicine, 2008, 38, 227-239.	4.6	133
2	The risk for behavioural deficits is determined by the maternal immune response to prenatal immune challenge in a neurodevelopmental model. Brain, Behavior, and Immunity, 2014, 42, 138-146.	4.1	114
3	Vagus Nerve Stimulation for Refractory Epilepsy: A Transatlantic Experience. Journal of Clinical Neurophysiology, 2004, 21, 283-289.	1.7	108
4	Hypolocomotive behaviour associated with increased microglia in a prenatal immune activation model with relevance to schizophrenia. Behavioural Brain Research, 2014, 258, 179-186.	2.2	93
5	PET imaging of brain inflammation during early epileptogenesis in a rat model of temporal lobe epilepsy. EJNMMI Research, 2012, 2, 60.	2.5	78
6	The Mechanism of Action of Vagus Nerve Stimulation for Refractory Epilepsy. Journal of Clinical Neurophysiology, 2001, 18, 394-401.	1.7	77
7	Long-term Deep Brain Stimulation for Refractory Temporal Lobe Epilepsy. Epilepsia, 2005, 46, 98-99.	5.1	72
8	Thalamic and limbic involvement in the mechanism of action of vagus nerve stimulation, a SPECT study. Seizure: the Journal of the British Epilepsy Association, 2008, 17, 699-706.	2.0	70
9	Brain inflammation in a chronic epilepsy model: Evolving pattern of the translocator protein during epileptogenesis. Neurobiology of Disease, 2015, 82, 526-539.	4.4	69
10	Preclinical Evaluation of ¹⁸ F-JNJ41510417 as a Radioligand for PET Imaging of Phosphodiesterase-10A in the Brain. Journal of Nuclear Medicine, 2010, 51, 1584-1591.	5.0	64
11	P2X7 receptor antagonism reduces the severity of spontaneous seizures in a chronic model of temporal lobe epilepsy. Neuropharmacology, 2016, 105, 175-185.	4.1	57
12	Kainic Acid-Induced Post-Status Epilepticus Models of Temporal Lobe Epilepsy with Diverging Seizure Phenotype and Neuropathology. Frontiers in Neurology, 2017, 8, 588.	2.4	57
13	Finding a better drug for epilepsy: Antiinflammatory targets. Epilepsia, 2012, 53, 1113-1118.	5.1	44
14	Imaging brain inflammation in epilepsy. Neuroscience, 2014, 279, 238-252.	2.3	44
15	Synthesis, In Vivo Occupancy, and Radiolabeling of Potent Phosphodiesterase Subtype-10 Inhibitors as Candidates for Positron Emission Tomography Imaging. Journal of Medicinal Chemistry, 2011, 54, 5820-5835.	6.4	43
16	Neural ECM and epilepsy. Progress in Brain Research, 2014, 214, 229-262.	1.4	43
17	Neuroinflammation imaging markers for epileptogenesis. Epilepsia, 2017, 58, 11-19.	5.1	41
18	Small animal positron emission tomography during vagus nerve stimulation in rats: A pilot study. Epilepsy Research, 2005, 67, 133-141.	1.6	38

#	Article	IF	CITATIONS
19	Towards a reproducible protocol for repetitive and semi-quantitative rat brain imaging with 18 F-FDG: Exemplified in a memantine pharmacological challenge. NeuroImage, 2014, 96, 276-287.	4.2	37
20	Memantine-induced brain activation as a model for the rapid screening of potential novel antipsychotic compounds: exemplified by activity of an mGlu2/3 receptor agonist. Psychopharmacology, 2011, 214, 505-514.	3.1	32
21	Neuroimaging of Subacute Brain Inflammation and Microstructural Changes Predicts Long-Term Functional Outcome after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 768-788.	3.4	32
22	Non-invasive PET imaging of brain inflammation at disease onset predicts spontaneous recurrent seizures and reflects comorbidities. Brain, Behavior, and Immunity, 2017, 61, 69-79.	4.1	30
23	Generator replacement in epilepsy patients treated with vagus nerve stimulation. Seizure: the Journal of the British Epilepsy Association, 2005, 14, 89-99.	2.0	29
24	Manganese-enhanced MRI reflects seizure outcome in a model for mesial temporal lobe epilepsy. NeuroImage, 2013, 68, 30-38.	4.2	29
25	Detection of spike and wave discharges in the cortical EEG of genetic absence epilepsy rats from Strasbourg. Physics in Medicine and Biology, 2003, 48, 1685-1700.	3.0	28
26	Vagus nerve stimulation does not affect spatial memory in fast rats, but has both anti-convulsive and pro-convulsive effects on amygdala-kindled seizures. Neuroscience, 2006, 140, 1443-1451.	2.3	26
27	WONOEP appraisal: Imaging biomarkers in epilepsy. Epilepsia, 2017, 58, 315-330.	5.1	26
28	Acute vagus nerve stimulation does not suppress spike and wave discharges in "Genetic Absence Epilepsy Rats from Strasbourg― Epilepsy Research, 2004, 59, 191-198.	1.6	25
29	Patterns of Brain Glucose Metabolism Induced by Phosphodiesterase 10A Inhibitors in the Mouse: A Potential Translational Biomarker. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 210-217.	2.5	25
30	The Acute and Chronic Effect of Vagus Nerve Stimulation in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Epilepsia, 2005, 46, 94-97.	5.1	24
31	Chronic levetiracetam treatment early in life decreases epileptiform events in young GAERS, but does not prevent the expression of spike and wave discharges during adulthood. Seizure: the Journal of the British Epilepsy Association, 2005, 14, 403-411.	2.0	23
32	Positron Emission Tomography in Basic Epilepsy Research: A View of the Epileptic Brain. Epilepsia, 2007, 48, 56-64.	5.1	23
33	In-vivo imaging characteristics of two fluorinated flumazenil radiotracers in the rat. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 958-965.	6.4	22
34	In Vivo Measurement of Hippocampal GABAA/cBZR Density with [18F]-Flumazenil PET for the Study of Disease Progression in an Animal Model of Temporal Lobe Epilepsy. PLoS ONE, 2014, 9, e86722.	2.5	22
35	Changes in hippocampal GABAA/cBZR density during limbic epileptogenesis: Relationship to cell loss and mossy fibre sprouting. Neurobiology of Disease, 2011, 41, 227-236.	4.4	19
36	In vivo measurement of brain network connectivity reflects progression and intrinsic disease severity in a model of temporal lobe epilepsy. Neurobiology of Disease, 2019, 127, 45-52.	4.4	19

#	Article	IF	CITATIONS
37	Subchronic memantine induced concurrent functional disconnectivity and altered ultra-structural tissue integrity in the rodent brain: revealed by multimodal MRI. Psychopharmacology, 2013, 227, 479-491.	3.1	18
38	Neuroimaging in animal models of epilepsy. Neuroscience, 2017, 358, 277-299.	2.3	18
39	Rapid kindling in preclinical anti-epileptic drug development: The effect of levetiracetam. Epilepsy Research, 2005, 67, 109-116.	1.6	14
40	Increased brain metabolism after acute administration of the synthetic cannabinoid HU210: A small animal PET imaging study with 18F-FDG. Brain Research Bulletin, 2012, 87, 172-179.	3.0	14
41	Workshop on Neurobiology of Epilepsy appraisal: New systemic imaging technologies to study the brain in experimental models of epilepsy. Epilepsia, 2014, 55, 819-828.	5.1	13
42	Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction. Psychiatry Research - Neuroimaging, 2016, 248, 1-11.	1.8	13
43	Synthesis and preclinical evaluation of an 18 F labeled PDE7 inhibitor for PET neuroimaging. Nuclear Medicine and Biology, 2015, 42, 975-981.	0.6	12
44	Hypersynchronicity in the default mode-like network in a neurodevelopmental animal model with relevance for schizophrenia. Behavioural Brain Research, 2019, 364, 303-316.	2.2	11
45	What value can TSPO PET bring for epilepsy treatment?. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 49, 221-233.	6.4	11
46	A novel system allowing long-term simultaneous video-electroencephalography recording, drug infusion and blood sampling in rats. Journal of Neuroscience Methods, 2009, 179, 184-190.	2.5	10
47	Long-Term Valproate Treatment Increases Brain Neuropeptide Y Expression and Decreases Seizure Expression in a Genetic Rat Model of Absence Epilepsy. PLoS ONE, 2013, 8, e73505.	2.5	10
48	In the grey zone between epilepsy and schizophrenia: alterations in group II metabotropic glutamate receptors. Acta Neurologica Belgica, 2015, 115, 221-232.	1.1	10
49	Fluctuating and constant valproate administration gives equivalent seizure control in rats with genetic and acquired epilepsy. Seizure: the Journal of the British Epilepsy Association, 2011, 20, 72-79.	2.0	9
50	TSPO PET upregulation predicts epileptic phenotype at disease onset independently from chronic TSPO expression in a rat model of temporal lobe epilepsy. NeuroImage: Clinical, 2021, 31, 102701.	2.7	9
51	Metabotropic glutamate receptor 2/3 density and its relation to the hippocampal neuropathology in a model of temporal lobe epilepsy in rats. Epilepsy Research, 2016, 127, 55-59.	1.6	6
52	Decreased levels of active <scp>uPA</scp> and <scp>KLK</scp> 8 assessed by [¹¹¹ In] <scp>MICA</scp> â€401 binding correlate with the seizure burden in an animal model of temporal lobe epilepsy. Epilepsia, 2017, 58, 1615-1625.	5.1	5
53	Neuromodulation with levetiracetam and vagus nerve stimulation in experimental animal models of epilepsy. Acta Neurologica Belgica, 2006, 106, 91-7.	1.1	5
54	Spatiotemporal expression and inhibition of prolyl oligopeptidase contradict its involvement in key pathologic mechanisms of kainic acid–induced temporal lobe epilepsy in rats. Epilepsia Open, 2019, 4, 92-101	2.4	1

#	Article	IF	CITATIONS
55	[18F]JNJ41510417 a potential PET radioligand for imaging phosphodiesterase-10A in the brain. NeuroImage, 2010, 52, S15.	4.2	0
56	Population derived principle component analysis based model for the [¹⁸ F]PBR111 arterial input function in rats. , 2013, , .		0
57	In Vivo Imaging in Rodents. , 2017, , 197-215.		0