Randell A Stephenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9512139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution. Tectonophysics, 1996, 268, 23-63.	2.2	330
2	On the origin of the Southern Permian Basin, Central Europe. Marine and Petroleum Geology, 2000, 17, 43-59.	3.3	240
3	Late Vendian–Early Palæozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 1999, 314, 219-239.	2.2	163
4	Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 1995, 252, 179-195.	2.2	158
5	TOPO-EUROPE: The geoscience of coupled deep Earth-surface processes. Global and Planetary Change, 2007, 58, 1-118.	3.5	137
6	Some examples and mechanical aspects of continental lithospheric folding. Tectonophysics, 1991, 188, 27-37.	2.2	100
7	Arctic lithosphere — A review. Tectonophysics, 2014, 628, 1-25.	2.2	95
8	The Mesozoic-Cenozoic tectonic evolution of the Greater Caucasus. Geological Society Memoir, 2006, 32, 277-289.	1.7	92
9	Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations. Nature, 2007, 450, 1071-1074.	27.8	92
10	Topography of the crust–mantle boundary beneath the Black Sea Basin. Tectonophysics, 2004, 381, 211-233.	2.2	89
11	Late Cretaceous to Paleocene oroclinal bending in the central Pontides (Turkey). Tectonics, 2010, 29, n/a-n/a.	2.8	86
12	Jurassic arc volcanism on Crimea (Ukraine): Implications for the paleo-subduction zone configuration of the Black Sea region. Lithos, 2010, 119, 412-426.	1.4	82
13	Crustal-scale pop-up structure in cratonic lithosphere: DOBRE deep seismic reflection study of the Donbas fold belt, Ukraine. Geology, 2003, 31, 733.	4.4	78
14	Small-Scale Mantle Convection Produces Stratigraphic Sequences in Sedimentary Basins. Science, 2010, 329, 827-830.	12.6	74
15	"DOBREfraction'99â€â€"velocity model of the crust and upper mantle beneath the Donbas Foldbelt (East) T	ј ЕТ <u>О</u> д1 1 2:21	0.784314 rg
16	lsostatic response of the lithosphere with inâ€plane stress: Application to central Australia. Journal of Geophysical Research, 1985, 90, 8581-8588.	3.3	71
17	Flexural interaction and the dynamics of neogene extensional Basin formation in the Alboran-Betic region. Geo-Marine Letters, 1992, 12, 66-75.	1.1	69
18	Erosion-isostatic rebound models for uplift: an application to south-eastern Australia. Geophysical Journal International, 1985, 82, 31-55.	2.4	68

#	Article	IF	CITATIONS
19	The eastern Black Sea-Caucasus region during the Cretaceous: New evidence to constrain its tectonic evolution. Comptes Rendus - Geoscience, 2016, 348, 23-32.	1.2	67
20	The postâ€Palaeozoic uplift history of southâ€eastern Australia. Australian Journal of Earth Sciences, 1986, 33, 253-270.	1.0	64
21	The evolution of the southern margin of Eastern Europe (Eastern European and Scythian platforms) from the Latest Precambrian- Early Palaeozoic to the Early Cretaceous. Geological Society Memoir, 2006, 32, 481-505.	1.7	64
22	The Donbas Foldbelt: its relationships with the uninverted Donets segment of the Dniepr–Donets Basin, Ukraine. Tectonophysics, 1999, 313, 59-83.	2.2	63
23	Baltica in the Cryogenian, 850–630Ma. Precambrian Research, 2008, 160, 46-65.	2.7	63
24	Subsidence analysis and modelling of the Roer Valley Graben (SE Netherlands). Tectonophysics, 1992, 208, 159-171.	2.2	60
25	Structural inheritance in the North Atlantic. Earth-Science Reviews, 2020, 206, 102975.	9.1	60
26	Structural features and evolution of the Dniepr-Donets Basin, Ukraine, from regional seismic reflection profiles. Tectonophysics, 1996, 268, 127-147.	2.2	59
27	Tectonic variation in the Dniepr-Donets Basin from automated modelling of backstripped subsidence curves. Tectonophysics, 1996, 268, 257-280.	2.2	59
28	Lasting mantle scars lead to perennial plate tectonics. Nature Communications, 2016, 7, 11834.	12.8	58
29	Sequence stratigraphy and correlation of late Carboniferous and Permian in the CIS, Europe, Tethyan area, North Africa, Arabia, China, Gondwanaland and the USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 196, 59-84.	2.3	56
30	Quantitative modelling of basin and rheological evolution of the Iberian Basin (Central Spain): implications for lithospheric dynamics of intraplate extension and inversion. Tectonophysics, 1995, 252, 163-178.	2.2	51
31	Seismic velocity model of the crust and upper mantle along profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 2013, 608, 1049-1072.	2.2	51
32	Flexural models of continental lithosphere based on the long-term erosional decay of topography. Geophysical Journal International, 1984, 77, 385-413.	2.4	49
33	Continental rift development in Precambrian and Phanerozoic Europe: EUROPROBE and the Dnieper-Donets Rift and Polish Trough basins. Sedimentary Geology, 1993, 86, 159-175.	2.1	49
34	Quantifying the mass transfer from mountain ranges to deposition in sedimentary basins: Source to sink studies in the Danube Basin–Black Sea system. Global and Planetary Change, 2013, 103, 1-18.	3.5	49
35	Stresses in the lithosphere and sedimentary basin formation. Tectonophysics, 1993, 226, 1-13.	2.2	47
36	Seismological evidence for a fossil subduction zone in the East Greenland Caledonides. Geology, 2014, 42, 311-314.	4.4	46

#	Article	IF	CITATIONS
37	Tectonic subsidence modelling of the Polish Basin in the light of new data on crustal structure and magnitude of inversion. Sedimentary Geology, 2003, 156, 59-70.	2.1	45
38	The Black Sea back-arc basin: insights to its origin from geodynamic models of modern analogues. Geological Society Special Publication, 2010, 340, 11-21.	1.3	44
39	The Iceland Microcontinent and a continental Greenland-Iceland-Faroe Ridge. Earth-Science Reviews, 2020, 206, 102926.	9.1	42
40	Crustal structure of the Innuitian region of Arctic Canada and Greenland from gravity modelling: implications for the Palaeogene Eurekan orogen. Geophysical Journal International, 2008, 173, 1039-1063.	2.4	41
41	Using high-resolution aeromagnetic data to recognise and map intra-sedimentary volcanic rocks and geological structures across the Cretaceous middle Benue Trough, Nigeria. Journal of African Earth Sciences, 2014, 99, 625-636.	2.0	40
42	3-D gravity analysis of the Dniepr–Donets Basin and Donbas Foldbelt, Ukraine. Tectonophysics, 1999, 313, 41-58.	2.2	38
43	Crustal structure and tectonics of the southeastern Beaufort Sea continental margin. Tectonics, 1994, 13, 389-400.	2.8	37
44	The formation of the northwestern Dniepr-Donets Basin: 2-D forward and reverse syn-rift and post-rift modelling. Tectonophysics, 1996, 268, 237-255.	2.2	36
45	Role of thermal refraction in localizing intraplate deformation in southeastern Ukraine. Nature Geoscience, 2009, 2, 290-293.	12.9	35
46	Cretaceous–Neogene tectonic evolution of the northern margin of the Black Sea from seismic reflection data and tectonic subsidence analysis. Geological Society Special Publication, 2010, 340, 137-157.	1.3	35
47	Paleostress field reconstruction and revised tectonic history of the Donbas fold and thrust belt (Ukraine and Russia). Tectonics, 2003, 22, n/a-n/a.	2.8	34
48	3-D flexural modelling of the Silurian Baltic Basin. Tectonophysics, 2002, 346, 115-135.	2.2	33
49	Style and timing of salt tectonics in the Dniepr-Donets Basin (Ukraine): implications for triggering and driving mechanisms of salt movement in sedimentary basins. Marine and Petroleum Geology, 2002, 19, 1169-1189.	3.3	33
50	Nonâ€uniform hyperâ€extension in advance of seafloor spreading on the vietnam continental margin and the SW South China Sea. Basin Research, 2014, 26, 106-134.	2.7	33
51	Syn-rift evolution of the Pripyat Trough: constraints from structural and stratigraphic modelling. Tectonophysics, 1996, 268, 221-236.	2.2	32
52	Relation between salt diapirism and the tectonic history of the Sverdrup Basin, Arctic Canada. Canadian Journal of Earth Sciences, 1992, 29, 2695-2705.	1.3	31
53	The European lithosphere: an introduction. Geological Society Memoir, 2006, 32, 1-9.	1.7	31
54	New late Paleozoic paleopoles from the Donbas Foldbelt (Ukraine): Implications for the Pangea A vs. B controversy. Earth and Planetary Science Letters, 2010, 297, 18-33.	4.4	31

#	Article	IF	CITATIONS
55	The Vendian-Early Palaeozoic sedimentary basins of the East European Craton. Geological Society Memoir, 2006, 32, 449-462.	1.7	30
56	Smallâ€scale convection at a continental backâ€arc to craton transition: Application to the southern Canadian Cordillera. Journal of Geophysical Research, 2012, 117, .	3.3	29
57	The40Ar/39Ar dating of magmatic activity in the Donbas Fold Belt and the Scythian Platform (Eastern) Tj ETQq1	1 0.78431 2.8	4 rgBT /Ovel
58	Structure of the lithosphere below the southern margin of the East European Craton (Ukraine and) Tj ETQq0 0 0	rgBT/Ove 2.2	rlock 10 Tf 5
59	2.5D seismic velocity modelling in the south-eastern Romanian Carpathians Orogen and its foreland. Tectonophysics, 2005, 410, 273-291.	2.2	28
60	Two-dimensional inverse modeling of sedimentary basin subsidence. Journal of Geophysical Research, 2001, 106, 6657-6671.	3.3	27
61	Structures associated with inversion of the Donbas Foldbelt (Ukraine and Russia). Tectonophysics, 2003, 373, 181-207.	2.2	27
62	Jurassic–Cretaceous low paleolatitudes from the circum-Black Sea region (Crimea and Pontides) due to True Polar Wander. Earth and Planetary Science Letters, 2010, 296, 210-226.	4.4	27
63	Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform: introduction. Geological Society Special Publication, 2010, 340, 1-10.	1.3	25
64	The evolution of the southern margin of the East European Craton based on seismic and potential field data. Tectonophysics, 2004, 381, 101-118.	2.2	24
65	Near-vertical seismic reflection image using a novel acquisition technique across the Vrancea Zone and Foscani Basin, south-eastern Carpathians (Romania). Tectonophysics, 2005, 410, 293-309.	2.2	24
66	The Southern Oklahoma and Dniepr-Donets aulacogens: A comparative analysis. Memoir of the Geological Society of America, 2007, , 127-143.	0.5	23
67	Crustal structure of the Canadian polar margin: results of the 1985 seismic refraction survey. Canadian Journal of Earth Sciences, 1989, 26, 853-866.	1.3	22
68	Timing and mechanisms controlling evaporite diapirism on Ellef Ringnes Island, Canadian Arctic Archipelago. Basin Research, 2011, 23, 478-498.	2.7	22
69	Geological structure of the northern part of the Eastern Black Sea from regional seismic reflection data including the DOBRE-2 CDP profile. Geological Society Special Publication, 2017, 428, 307-321.	1.3	22
70	Late Cretaceous-Cenozoic basin inversion and palaeostress fields in the North Atlantic-western Alpine-Tethys realm: Implications for intraplate tectonics. Earth-Science Reviews, 2020, 210, 103252.	9.1	22
71	The Donets Basin (Ukraine/Russia): coalification and thermal history. International Journal of Coal Geology, 2002, 49, 33-55.	5.0	20
72	Quantification of the control of sequences by tectonics and eustacy in the Dniepr-Donets Basin and on the Russian Platform during Carboniferous and Permian. Bulletin - Societie Geologique De France, 2003, 174, 93-100.	2.2	19

#	Article	IF	CITATIONS
73	Gravity and magnetic modelling in the Vrancea Zone, south-eastern Carpathians: Redefinition of the edge of the East European Craton beneath the south-eastern Carpathians. Journal of Geodynamics, 2013, 71, 52-64.	1.6	19
74	Reappraisal of deep seismic reflection Profile VIII across the Pripyat Trough. Tectonophysics, 1996, 268, 99-108.	2.2	18
75	Mechanical stability of the Redbank Thrust Zone, Central Australia: Dynamic and rheological implications. Australian Journal of Earth Sciences, 1997, 44, 215-226.	1.0	18
76	Identifying mantle lithosphere inheritance in controlling intraplate orogenesis. Journal of Geophysical Research: Solid Earth, 2016, 121, 6966-6987.	3.4	18
77	Evolution of the central West Greenland margin and the Nuussuaq Basin: Localised basin uplift along a stable continental margin proposed from thermochronological data. Basin Research, 2018, 30, 1230-1246.	2.7	18
78	Architecture of the south-eastern Carpathians nappes and Focsani Basin (Romania) from 2D ray tracing of densely-spaced refraction data. Tectonophysics, 2009, 476, 512-527.	2.2	17
79	A new geodynamical–thermal model of rift evolution, with application to the Dnieper–Donets Basin, Ukraine. Tectonophysics, 1999, 313, 29-40.	2.2	16
80	The formation of the south-eastern part of the Dniepr–Donets Basin: 2-D forward and reverse modelling taking into account post-rift redeposition of syn-rift salt. Sedimentary Geology, 2003, 156, 11-33.	2.1	16
81	The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt. Geophysical Journal International, 2016, 204, 1579-1600.	2.4	16
82	The role of pre-existing Precambrian structures in the development of Rukwa Rift Basin, southwest Tanzania. Journal of African Earth Sciences, 2019, 150, 607-625.	2.0	16
83	Bouguer gravity anomalies and speculations on the regional crustal structure of the Eurekan Orogen, Arctic Canada. Marine Geology, 1990, 93, 401-420.	2.1	14
84	Intraplate orogenesis within accreted and scarred lithosphere: Example of the Eurekan Orogeny, Ellesmere Island. Tectonophysics, 2015, 664, 202-213.	2.2	14
85	Geological features of the northeastern Canadian Arctic margin revealed from analysis of potential field data. Tectonophysics, 2016, 691, 48-64.	2.2	14
86	Tectonic Evolution of the Eastern Black Sea and Caucasus: an introduction. Geological Society Special Publication, 2017, 428, 1-9.	1.3	14
87	Back-arc rifting initiated with a hot and wet continental lithosphere. Earth and Planetary Science Letters, 2011, 302, 172-184.	4.4	13
88	DOBRE-2 WARR profile: the Earth's upper crust across Crimea between the Azov Massif and the northeastern Black Sea. Geological Society Special Publication, 2017, 428, 199-220.	1.3	13
89	Structure of the crust and upper mantle beneath the ParnaÃba Basin, Brazil, from wide-angle reflection–refraction data. Geological Society Special Publication, 2018, 472, 67-82.	1.3	13
90	The Canada Basin compared to the southwest South China Sea: Two marginal ocean basins with hyper-extended continent-ocean transitions. Tectonophysics, 2016, 691, 171-184.	2.2	12

#	Article	IF	CITATIONS
91	Local tomography model of the northeastern Black Sea: intra-plate crustal underthrusting. Geological Society Special Publication, 2017, 428, 221-239.	1.3	12
92	Differential erosion of a Mesozoic rift flank: Establishing the source of topography across Karrat, central West Greenland. Geomorphology, 2019, 334, 138-150.	2.6	12
93	Three-dimensional gravity analysis of the Kiglapait layered intrusion, Labrador. Canadian Journal of Earth Sciences, 1979, 16, 24-37.	1.3	11
94	Evolution of the west Greenland margin: offshore thermostratigraphic data and modelling. Journal of the Geological Society, 2012, 169, 515-530.	2.1	11
95	Regional crustal architecture of Ellesmere Island, Arctic Canada. Geological Society Special Publication, 2018, 460, 19-32.	1.3	11
96	Long-term exhumation of a Palaeoproterozoic orogen and the role of pre-existing heterogeneous thermal crustal properties: a fission-track study of SE Baffin Island. Journal of the Geological Society, 2013, 170, 877-891.	2.1	10
97	Integrated crustal–geological cross-section of Ellesmere Island. Geological Society Special Publication, 2018, 460, 7-17.	1.3	10
98	West Gondwana orogenies and Pangaea break-up: thermotectonic effects on the southernmost Mantiqueira Province, Brazil. Journal of the Geological Society, 2019, 176, 1056-1075.	2.1	10
99	Basement morphology of the middle Benue Trough, Nigeria, revealed from analysis of high-resolution aeromagnetic data using grid-based operator methods. Journal of African Earth Sciences, 2020, 162, 103724.	2.0	10
100	P–T–t modelling of Proterozoic terranes in Lithuania: geodynamic implications for accretion of southwestern Fennoscandia. Gff, 2003, 125, 201-211.	1.2	9
101	Delineating tectonic units beneath the Donbas Fold Belt using scale lengths estimated from DOBRE 2000/2001 deep reflection data. Journal of Geophysical Research, 2009, 114, .	3.3	9
102	A sub-crustal piercing point for North Atlantic reconstructions and tectonic implications. Geology, 2015, , G37245.1.	4.4	9
103	Deformation driven by deep and distant structures: Influence of a mantle lithosphere suture in the Ouachita orogeny, southeastern United States. Geology, 2019, 47, 147-150.	4.4	9
104	Postâ€orogenic evolution of a mountain range: Southâ€eastern Australian Highlands. Geophysical Research Letters, 1985, 12, 801-804.	4.0	8
105	Implications of a visco-elastic model of the lithosphere for calculating yield strength envelopes. Journal of Geodynamics, 2006, 42, 12-27.	1.6	8
106	Change in tectonic force inferred from basin subsidence: Implications for the dynamical aspects of back-arc rifting in the western Mediterranean. Earth and Planetary Science Letters, 2009, 277, 174-183.	4.4	8
107	Potential role of strain hardening in the cessation of rifting at constant tectonic force. Journal of Geodynamics, 2009, 47, 47-62.	1.6	8
108	Basin evolution in the Davis Strait area (West Greenland and conjugate East Baffin/Labrador passive) Tj ETQq0 C evolution and petroleum systems. Bullentin of Canadian Petroleum Geology, 2014, 62, 311-329.	0 rgBT /O 0.3	verlock 10 Tf 8

#	Article	IF	CITATIONS
109	Sedimentary geology of the middle Carboniferous of the Donbas region (Dniepr-Donets basin,) Tj ETQq1 1 0.78	431 <u>4</u> rgBT	Oyerlock 10
110	IAS: A New Novel Phase-Based Filter for Detection of Unexploded Ordnances. Remote Sensing, 2021, 13, 4345.	4.0	8
111	Neotectonics seismicity in the south-eastern Beaufort Sea polar continental margin of north-western Canada. Journal of Geodynamics, 1998, 27, 175-190.	1.6	7
112	The pre-Permian residual gravity field for the Dutch onshore and adjacent offshore. Global and Planetary Change, 2000, 27, 53-66.	3.5	6
113	Reply to: Thermal history solutions from thermochronology must be governed by geological relationships: A comment on Jess et al. (2019). Geomorphology, 2020, 360, 106971.	2.6	6
114	RomUkrSeis: Seismic model of the crust and upper mantle across the Eastern Carpathians – From the Apuseni Mountains to the Ukrainian Shield. Tectonophysics, 2020, 794, 228620.	2.2	6
115	Thermochronology of South America passive margin between Uruguay and southern Brazil: A lengthy and complex cooling history based on (U–Th)/He and fission tracks. Journal of South American Earth Sciences, 2021, 106, 103019.	1.4	6
116	Implications of tectonic subsidence models for crustal structure beneath the Mid-Polish Trough. Studia Geophysica Et Geodaetica, 1995, 39, 289-297.	0.5	5
117	Assumptions and observations in tectonic modelling of rift basins: some implications of thermo-isostasy, stress and rheology for intrabasinal structure. Marine and Petroleum Geology, 1996, 13, 437-445.	3.3	5
118	Modelling of compression and extension of the continental lithosphere: Towards rehabilitation of the necking-level model. Journal of Geodynamics, 2010, 50, 368-380.	1.6	5
119	Scientific network to decipher crustal evolution of the Arctic. Eos, 2011, 92, 361-363.	0.1	5
120	Low-temperature thermochronology of the South Atlantic margin along Uruguay and its relation to tectonic events in West Gondwana. Tectonophysics, 2020, 784, 228439.	2.2	5
121	The Dniepr-Donets Basin. , 2012, , 420-441.		4
122	Characterization of crustal structure by comparing reflectivity patterns of wide-angle and near vertical seismic data from the ParnaÃba Basin, Brazil. Geophysical Journal International, 2019, 218, 1652-1664.	2.4	4
123	Review of the main Black Sea rifting phase in the Cretaceous and implications for the evolution of the Black Sea lithosphere. Journal of Geodynamics, 2022, 149, 101891.	1.6	4
124	Deep controls on intraplate basin inversion. , 2014, , 257-274.		3
125	Exploring the theory of plate tectonics: the role of mantle lithosphere structure. Geological Society Special Publication, 2019, 470, 137-155.	1.3	3
126	Seismic anisotropy of the Canadian High Arctic: Evidence from shear-wave splitting. Tectonophysics, 2020, 789, 228524.	2.2	3

#	Article	IF	CITATIONS
127	The source of topography across the Cumberland Peninsula, Baffin Island, Arctic Canada: differential exhumation of a North Atlantic rift flank. Journal of the Geological Society, 2019, 176, 1093-1106.	2.1	3
128	Preface: Crustal controls on the internal architecture of sedimentary basins. Tectonophysics, 1993, 228, vii-viii.	2.2	2
129	Aspects of geological knowledge for sustainable development in Africa: Women in African Geoscience. Journal of African Earth Sciences, 2009, 55, v-vii.	2.0	2
130	Pooled subsidence records from numerous wells reveal variations in pre-break-up rifting along the proximal domains of the Iberia–Newfoundland continental margins. Geological Magazine, 2019, 156, 1323-1333.	1.5	2
131	An investigation of how intracratonic rifting is "seeded†Case study of the Late Devonian Dniepr-Donets Basin rift within the East European Craton. Precambrian Research, 2021, 362, 106305.	2.7	2
132	Vp/Vs ratios in the ParnaÃba Basin from joint active-passive seismic analysis – Implications for continental amalgamation and basin formation. Tectonophysics, 2021, 801, 228715.	2.2	1
133	Effect of errors in the acquisition of deep seismic reflection data recorded in mountainous areas. , 2012, , .		Ο