
Patrizio Blandina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9511887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diet Prevents Social Stress-Induced Maladaptive Neurobehavioural and Gut Microbiota Changes in a Histamine-Dependent Manner. International Journal of Molecular Sciences, 2022, 23, 862.	4.1	7
2	Modulation of Carbonic Anhydrases Activity in the Hippocampus or Prefrontal Cortex Differentially Affects Social Recognition Memory in Rats. Neuroscience, 2022, 497, 184-195.	2.3	12
3	Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine. Biomolecules, 2021, 11, 555.	4.0	11
4	Brain histamine and oleoylethanolamide restore behavioral deficits induced by chronic social defeat stress in mice. Neurobiology of Stress, 2021, 14, 100317.	4.0	11
5	Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders?. International Journal of Molecular Sciences, 2021, 22, 10000.	4.1	9
6	Activation of carbonic anhydrase isoforms involved in modulation of emotional memory and cognitive disorders with histamine agonists, antagonists and derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 719-726.	5.2	21
7	A Duet Between Histamine and Oleoylethanolamide in the Control of Homeostatic and Cognitive Processes. Current Topics in Behavioral Neurosciences, 2021, , 389-410.	1.7	3
8	Different Peas in the Same Pod: The Histaminergic Neuronal Heterogeneity. Current Topics in Behavioral Neurosciences, 2021, , .	1.7	1
9	Neuronal histamine and the memory of emotionally salient events. British Journal of Pharmacology, 2020, 177, 557-569.	5.4	22
10	Brain histamine modulates recognition memory: possible implications in major cognitive disorders. British Journal of Pharmacology, 2020, 177, 539-556.	5.4	36
11	Carbonic anhydrase modulation of emotional memory. Implications for the treatment of cognitive disorders. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1206-1214.	5.2	46
12	The role of carbonic anhydrases in extinction of contextual fear memory. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16000-16008.	7.1	33
13	Carbonic anhydrase activators and their potential in the pharmaceutical field. , 2019, , 477-492.		0
14	Preventing adolescent stress-induced cognitive and microbiome changes by diet. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9644-9651.	7.1	79
15	Histamine-deficient mice do not respond to the antidepressant-like effects of oleoylethanolamide. Neuropharmacology, 2018, 135, 234-241.	4.1	16
16	Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus. Neuropharmacology, 2017, 118, 148-156.	4.1	77
17	Histamine regulates memory consolidation. Neurobiology of Learning and Memory, 2017, 145, 1-6.	1.9	18
18	Brain histamine depletion enhances the behavioural sequences complexity of mice tested in the open-field: Partial reversal effect of the dopamine D2/D3 antagonist sulpiride. Neuropharmacology, 2017, 113, 533-542.	4.1	14

#	Article	IF	CITATIONS
19	Histaminergic Neurotransmission as a Gateway for the Cognitive Effect of Oleoylethanolamide in Contextual Fear Conditioning. International Journal of Neuropsychopharmacology, 2017, 20, 392-399.	2.1	13
20	Memory retrieval of inhibitory avoidance requires histamine H ₁ receptor activation in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2714-20.	7.1	34
21	Donepezil, an acetylcholine esterase inhibitor, and ABT-239, a histamine H3 receptor antagonist/inverse agonist, require the integrity of brain histamine system to exert biochemical and procognitive effects in the mouse. Neuropharmacology, 2016, 109, 139-147.	4.1	32
22	The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology, 2016, 106, 3-12.	4.1	56
23	Histamine and Appetite. Receptors, 2016, , 341-360.	0.2	1
24	Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitorsâ€~ Behavioral and Neurochemical Effects. International Journal of Neuropsychopharmacology, 2015, 18, pyv045.	2.1	26
25	Histamine in the basolateral amygdala promotes inhibitory avoidance learning independently of hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2536-42.	7.1	41
26	Satiety factor oleoylethanolamide recruits the brain histaminergic system to inhibit food intake. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11527-11532.	7.1	79
27	Selective brain region activation by histamine H3 receptor antagonist/inverse agonist ABT-239 enhances acetylcholine and histamine release and increases c-Fos expression. Neuropharmacology, 2013, 70, 131-140.	4.1	38
28	Antagonism of histamine <scp>H₄ </scp> receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis. British Journal of Pharmacology, 2013, 170, 67-77.	5.4	32
29	Histaminergic ligands injected into the nucleus basalis magnocellularis differentially affect fear conditioning consolidation. International Journal of Neuropsychopharmacology, 2013, 16, 575-582.	2.1	21
30	Histamine. , 2012, , 323-341.		8
31	Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations?. Frontiers in Systems Neuroscience, 2012, 6, 33.	2.5	94
32	Histamine receptors in the CNS as targets for therapeutic intervention. Trends in Pharmacological Sciences, 2011, 32, 242-249.	8.7	182
33	<scp>l</scp> â€Dopa activates histaminergic neurons. Journal of Physiology, 2011, 589, 1349-1366.	2.9	60
34	The Histamine H ₃ Receptor and Eating Behavior. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 24-29.	2.5	72
35	The histaminergic tuberomammillary nucleus is critical for motivated arousal. European Journal of Neuroscience, 2010, 31, 2073-2085.	2.6	50
36	Histamine neuronal system as a therapeutic target for the treatment of cognitive disorders. Future Neurology, 2010, 5, 543-555.	0.5	7

#	Article	IF	CITATIONS
37	Regional Differential Effects of the Novel Histamine H ₃ Receptor Antagonist 6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1 <i>H</i> -3-benzazepin-7-yl)oxy]- <i>N</i> -methyl-3-pyridinecarboxamide hydrochloride (CSK189254) on Histamine Release in the Central Nervous System of Freely Moving Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 164-172.	2.5	63
38	Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. European Journal of Neuroscience, 2009, 29, 2363-2374.	2.6	65
39	Activation of the histaminergic H ₃ receptor induces phosphorylation of the Akt/GSKâ€3β pathway in cultured cortical neurons and protects against neurotoxic insults. Journal of Neurochemistry, 2009, 110, 1469-1478.	3.9	42
40	Cognitive Functions, Attention- Defi cit Hyperactivity Disorders, and Alzheimer's Disease. , 2008, , 213-239.		1
41	The Akt/CSKâ€3β axis as a new signaling pathway of the histamine H ₃ receptor. Journal of Neurochemistry, 2007, 103, 248-258.	3.9	58
42	Histamine in the brain: Beyond sleep and memory. Biochemical Pharmacology, 2007, 73, 1113-1122.	4.4	74
43	Differential effect of cannabinoid agonists and endocannabinoids on histamine release from distinct regions of the rat brain. European Journal of Neuroscience, 2006, 24, 1633-1644.	2.6	34
44	Betahistine increases ACh release from the cortex, but not histamine release from the nucleus basalis magnocellularis of freely-moving rats Inflammation Research, 2006, 55, S28-S29.	4.0	0
45	Aversive memory reactivation engages in the amygdala only some neurotransmitters involved in consolidation. Learning and Memory, 2006, 13, 426-430.	1.3	88
46	Central histaminergic system interactions and cognition. , 2006, 98, 149-163.		6
47	The H3 receptor protean agonist proxyfan enhances the expression of fear memory in the rat. Neuropharmacology, 2005, 48, 246-251.	4.1	34
48	The Neuronal Histaminergic System in Cognition. Current Medicinal Chemistry - Central Nervous System Agents, 2004, 4, 17-26.	0.5	5
49	Acetylcholine, Histamine, and Cognition: Two Sides of the Same Coin. Learning and Memory, 2004, 11, 1-8.	1.3	71
50	Thioperamide-elicited increase of histamine release from basolateral amygdala of freely moving rats and its therapeutic implications. Inflammation Research, 2004, 53, S53-S54.	4.0	13
51	The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends in Pharmacological Sciences, 2004, 25, 618-625.	8.7	212
52	Pro-cognitive effect of a selective histamine H 1 -receptor agonist, 2-(3-trifluoromethylphenyl)histamine, in the rat object recognition test. Inflammation Research, 2003, 52, s33-s34.	4.0	10
53	Improvement in Fear Memory by Histamine-Elicited ERK2 Activation in Hippocampal CA3 Cells. Journal of Neuroscience, 2003, 23, 9016-9023.	3.6	103
54	Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. European Journal of Neuroscience, 2002, 15, 1669-1680.	2.6	56

#	Article	IF	CITATIONS
55	Activation of histaminergic H3receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release. European Journal of Neuroscience, 2002, 16, 521-528.	2.6	87
56	Release of Glutamate from Striatum of Freely Moving Rats by pros-Methylimidazoleacetic Acid. Journal of Neurochemistry, 2002, 64, 788-793.	3.9	8
57	Interactions between histaminergic and cholinergic systems in learning and memory. Behavioural Brain Research, 2001, 124, 183-194.	2.2	81
58	Histamine H ₃ receptorâ€mediated impairment of contextual fear conditioning and <i>inâ€vivo</i> inhibition of cholinergic transmission in the rat basolateral amygdala. European Journal of Neuroscience, 2001, 14, 1522-1532.	2.6	90
59	Cortical acetylcholine release elicited by stimulation of histamine H ₁ receptors in the nucleus basalis magnocellularis: a dualá€probe microdialysis study in the freely moving rat. European Journal of Neuroscience, 2001, 13, 68-78.	2.6	12
60	Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual-probe microdialysis study in the freely moving rat. European Journal of Neuroscience, 2001, 13, 68-78.	2.6	31
61	Local GABAergic modulation of acetylcholine release from the cortex of freely moving rats. European Journal of Neuroscience, 2000, 12, 1941-1948.	2.6	64
62	Central histaminergic system and cognition. Neuroscience and Biobehavioral Reviews, 2000, 24, 107-113.	6.1	113
63	Effects of histamine H3 receptor agonists and antagonists on cognitive performance and scopolamine-induced amnesia. Behavioural Brain Research, 1999, 104, 147-155.	2.2	97
64	The acetylcholine, GABA, glutamate triangle in the rat forebrain. Journal of Physiology (Paris), 1998, 92, 351-355.	2.1	29
65	Therapeutic potential of histamine H3 receptor agonists and antagonists. Trends in Pharmacological Sciences, 1998, 19, 177-184.	8.7	261
66	Cognitive implications for H3 and 5-HT3 receptor modulation of cortical cholinergic function: A parallel story. Methods and Findings in Experimental and Clinical Pharmacology, 1998, 20, 725.	0.8	23
67	Inhibition of cortical acetylcholine release and cognitive performance by histamine H ₃ receptor activation in rats. British Journal of Pharmacology, 1996, 119, 1656-1664.	5.4	207
68	Glycine inhibition of glutamate evoked-release of norepinephrine in the hypothalamus is strychnine-insensitive. Brain Research, 1994, 650, 70-74.	2.2	3
69	Mast cell degranulating (MCD) peptide analogs with reduced ring structure. The Protein Journal, 1992, 11, 275-280.	1.1	14
70	Solid phase synthesis and biological activity of mast cell degranulating (MCD) peptide: a component of bee venom. International Journal of Peptide and Protein Research, 1989, 33, 86-93.	0.1	15
71	Activation of a 5-HT3 receptor releases dopamine from rat striatal slice. European Journal of Pharmacology, 1988, 155, 349-350.	3.5	158
72	The antianaphylactic action of histamine H ₂ â€receptor agonists in the guineaâ€pig isolated heart. British Journal of Pharmacology, 1987, 90, 459-466.	5.4	12

#	Article	IF	CITATIONS
73	Biological markers and therapeutic outcome in alcoholic disease: A twelve-year survey. Klinische Wochenschrift, 1987, 65, 27-33.	0.6	8
74	Aspects of histamine metabolism. Agents and Actions, 1987, 22, 1-15.	0.7	77
75	The release of histamine by parasympathetic stimulation in guinea-pig auricle and rat ileum Journal of Physiology, 1986, 371, 29-43.	2.9	70
76	Clinical findings and follow-up evaluation of an outbreak of mushroom poisoning — survey of amanita phalloides poisoning. Klinische Wochenschrift, 1986, 64, 38-43.	0.6	46
77	6 The Riddle of Cholinergic Histamine Release from Mast Cells. Progress in Medicinal Chemistry, 1985, 22, 267-291.	10.4	16
78	Mast Cell Heterogeneity in Response to Cholinergic Stimulation. International Archives of Allergy and Immunology, 1985, 77, 184-185.	2.1	22
79	Immunological modulation of cholinergic histamine release in isolated rat mast cells. Agents and Actions, 1985, 16, 152-154.	0.7	21
80	Mast cell and neutrophil interactions: A role for superoxide anion and histamine. Agents and Actions, 1985, 16, 260-264.	0.7	34
81	Mediator release from isolated rat ileum in response to field stimulation. Agents and Actions, 1984, 14, 405-409.	0.7	13
82	Histamine release by vagal stimulation. Agents and Actions, 1983, 13, 179-182.	0.7	9
83	N-Formylmethionyl-leucyl-phenylalanine: Different releasing effects on human neutrophils and rat mast cells. Agents and Actions, 1983, 13, 218-221.	0.7	13
84	Muscarinic cholinergic receptor binding in rat mast cells. Agents and Actions, 1983, 13, 327-332.	0.7	17
85	Evidence for H2-receptor-mediated inhibition of histamine release from isolated rat mast cells. Agents and Actions, 1982, 12, 85-88.	0.7	29
86	Mast cell receptors controlling histamine release: Influences on the mode of action of drugs used in the treatment of adverse drug reactions. Klinische Wochenschrift, 1982, 60, 1031-1038.	0.6	18
87	Epidemiological Survey of Intoxications in Florence in the Last Ten Years. Clinical Toxicology, 1981, 18, 1157-1162.	0.5	9
88	Correlation between cholinergic histamine release and quinuclidinyl-benzilate ([3H]-QNB) binding in mast cell membranes. Agents and Actions, 1981, 11, 55-59.	0.7	13
89	Clonidine and Naloxone for Rapid Opiate Detoxication: Comparison between Treatments. Clinical Toxicology, 1981, 18, 1021-1026.	O.5	8
90	Characteristics of histamine release evoked by acetylcholine in isolated rat mast cells Journal of Physiology, 1980, 301, 281-293.	2.9	86

#	Article	IF	CITATIONS
91	Inhibition of cholinergic histamine release in rat mast cells. Agents and Actions, 1980, 10, 139-140.	0.7	5
92	Cholinergic histamine release: Evidence of muscarinic receptors in rat mast cells. Agents and Actions, 1979, 9, 57-58.	0.7	12
93	Release of histamine from rat mast cells by acetylcholine. Nature, 1978, 273, 473-474.	27.8	149
94	Modulation of the spontaneous histamine release by adrenergic and cholinergic drugs. Agents and Actions, 1978, 8, 347-358.	0.7	29