
Andrés RodrÃ-guez-Seijo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9511864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 2017, 220, 495-503.	7.5	412
2	Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics. Environmental Science and Pollution Research, 2018, 25, 33599-33610.	5.3	139
3	Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms. Environmental Chemistry, 2019, 16, 8.	1.5	114
4	Sequential extraction of heavy metals in soils from a copper mine: Distribution in geochemical fractions. Geoderma, 2014, 230-231, 108-118.	5.1	105
5	Soil Science Challenges in a New Era: A Transdisciplinary Overview of Relevant Topics. Air, Soil and Water Research, 2020, 13, 117862212097749.	2.5	69
6	Origin and spatial distribution of metals in urban soils. Journal of Soils and Sediments, 2017, 17, 1514-1526.	3.0	52
7	Morphological and Physical Characterization of Microplastics. Comprehensive Analytical Chemistry, 2017, 75, 49-66.	1.3	46
8	Pb pollution in soils from a trap shooting range and the phytoremediation ability of Agrostis capillaris L Environmental Science and Pollution Research, 2016, 23, 1312-1323.	5.3	40
9	Lead and PAHs contamination of an old shooting range: A case study with a holistic approach. Science of the Total Environment, 2017, 575, 367-377.	8.0	38
10	Cobalt, chromium and nickel contents in soils and plants from a serpentinite quarry. Solid Earth, 2015, 6, 323-335.	2.8	37
11	Ability of Cytisus scoparius for phytoremediation of soils from a Pb/Zn mine: Assessment of metal bioavailability and bioaccumulation. Journal of Environmental Management, 2019, 235, 152-160.	7.8	34
12	Copper, Chromium, Nickel, Lead and Zinc Levels and Pollution Degree in Firing Range Soils. Land Degradation and Development, 2016, 27, 1721-1730.	3.9	33
13	Risk of metal mobility in soils from a Pb/Zn depleted mine (Lugo, Spain). Environmental Earth Sciences, 2014, 72, 2541-2556.	2.7	24
14	Ecological risk assessment and source apportionment of heavy metal contamination in urban soils in Shiraz, Southwest Iran. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	24
15	Using Ca3(PO4)2 nanoparticles to reduce metal mobility in shooting range soils. Science of the Total Environment, 2016, 571, 1136-1146.	8.0	18
16	Heavy metal content and toxicity of mine and quarry soils. Journal of Soils and Sediments, 2017, 17, 1331-1348.	3.0	18
17	Phytotoxicity assays with hydroxyapatite nanoparticles lead the way to recover firing range soils. Science of the Total Environment, 2019, 690, 1151-1161.	8.0	18
18	Identifying sources of Pb pollution in urban soils by means of MC-ICP-MS and TOF-SIMS. Environmental Science and Pollution Research, 2015, 22, 7859-7872.	5.3	17

#	Article	IF	CITATIONS
19	Assessment of iron-based and calcium-phosphate nanomaterials for immobilisation of potentially toxic elements in soils from a shooting range berm. Journal of Environmental Management, 2020, 267, 110640.	7.8	17
20	Potentially Toxic Element Content in Arid Agricultural Soils in South Iran. Agronomy, 2020, 10, 564.	3.0	17
21	Elucidating of potentially toxic elements contamination in topsoils around a copper smelter: Spatial distribution, partitioning and risk estimation. Environmental Geochemistry and Health, 2022, 44, 1795-1811.	3.4	16
22	Limitations for revegetation in lead/zinc minesoils (NW Spain). Journal of Soils and Sediments, 2014, 14, 785-793.	3.0	13
23	Microplastics in Agricultural Soils. , 2019, , 45-60.		12
24	Nano-Fe2O3 as a tool to restore plant growth in contaminated soils – Assessment of potentially toxic elements (bio)availability and redox homeostasis in Hordeum vulgare L. Journal of Hazardous Materials, 2022, 425, 127999.	12.4	12
25	Chemical availability versus bioavailability of potentially toxic elements in mining and quarry soils. Chemosphere, 2020, 251, 126421.	8.2	11
26	Soils from abandoned shooting range facilities as contamination source of potentially toxic elements: distribution among soil geochemical fractions. Environmental Geochemistry and Health, 2021, 43, 4283-4297.	3.4	7
27	Characterization of soil physico-chemical parameters and limitations for revegetation in serpentine quarry soils (NW Spain). Journal of Soils and Sediments, 2017, 17, 1321-1330.	3.0	6
28	Monitoring Sand Drift Potential and Sand Dune Mobility over the Last Three Decades (Khartouran Erg,) Tj ETQqO	0 0 rgBT / 3.2	Overlock 10 ⁻
29	Soft Computing Techniques for Appraisal of Potentially Toxic Elements from Jalandhar (Punjab), India. Applied Sciences (Switzerland), 2021, 11, 8362.	2.5	6

30	Pollution and risk assessment of potential hazardous elements in a shooting range soils (NW Spain). Spanish Journal of Soil Science, 0, 6, .	0.0	6
31	A Multianalytical Approach for the Assessment of Toxic Element Distribution in Soils From Mine and Quarry Areas. , 2017, , 33-62.		4
32	Small Plastic Wastes in Soils: What Is Our Real Perception of the Problem?. , 2020, , 187-209.		2
33	Cd2+, Cu2+, and Pb2+ sorption, desorption and migration in Fluvisols. Spanish Journal of Soil Science, 0, 5, .	0.0	0