Matthew Clapham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9511587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The End-Permian Mass Extinction. , 2021, , 645-652.		4
2	Cisuralian and Guadalupian global paleobiogeography of fusulinids in response to tectonics, ocean circulation and climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561, 110052.	2.3	4
3	Giant clam growth in the Gulf of Aqaba is accelerated compared to fossil populations. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210991.	2.6	7
4	Early evolution of beetles regulated by the end-Permian deforestation. ELife, 2021, 10, .	6.0	18
5	The role of bioturbation-driven substrate disturbance in the Mesozoic brachiopod decline. Paleobiology, 2021, 47, 86-100.	2.0	5
6	Interspecific and Intrashell Stable Isotope Variation Among the Red Sea Giant Clams. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008669.	2.5	7
7	The spatial structure of Phanerozoic marine animal diversity. Science, 2020, 368, 420-424.	12.6	92
8	Conservation evidence from climate-related stressors in the deep-time marine fossil record. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190223.	4.0	5
9	A Cretaceous peak in family-level insect diversity estimated with mark–recapture methodology. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192054.	2.6	31
10	Flood Basalts and Mass Extinctions. Annual Review of Earth and Planetary Sciences, 2019, 47, 275-303.	11.0	100
11	Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Science Advances, 2018, 4, e1602921.	10.3	145
12	Chlorine-containing salts as water ice nucleating particles on Mars. Icarus, 2018, 303, 280-287.	2.5	4
13	IDENTIFYING THE TICKS OF BIVALVE SHELL CLOCKS: SEASONAL GROWTH IN RELATION TO TEMPERATURE AND FOOD SUPPLY. Palaios, 2018, 33, 228-236.	1.3	24
14	Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6739-6744.	7.1	62
15	Extinction selectivity among marine fishes during multistressor global change in the end-Permian and end-Triassic crises. Geology, 2017, 45, 395-398.	4.4	21
16	Organism activity levels predict marine invertebrate survival during ancient global change extinctions. Global Change Biology, 2017, 23, 1477-1485.	9.5	23
17	Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?. Scientific Reports, 2016, 6, 19208.	3.3	110
18	Comparative size evolution of marine clades from the Late Permian through Middle Triassic. Paleobiology, 2016, 42, 127-142.	2.0	35

MATTHEW CLAPHAM

#	Article	IF	CITATIONS
19	Ancient origin of high taxonomic richness among insects. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152476.	2.6	32
20	Taphonomic biases in the insect fossil record: shifts in articulation over geologic time. Paleobiology, 2015, 41, 16-32.	2.0	19
21	Ecological consequences of the Guadalupian extinction and its role in the brachiopod-mollusk transition. Paleobiology, 2015, 41, 266-279.	2.0	15
22	Canopy Flow Analysis Reveals the Advantage of Size in the Oldest Communities of Multicellular Eukaryotes. Current Biology, 2014, 24, 305-309.	3.9	62
23	Paleoecology of brachiopod communities during the late Paleozoic ice age in Bolivia (Copacabana) Tj ETQq1 1 0. 387, 56-65.	784314 rg 2.3	gBT /Overlock 12
24	Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland. Paleobiology, 2013, 39, 591-608.	2.0	71
25	A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 370, 260-270.	2.3	201
26	Taxonomic composition and environmental distribution of post-extinction rhynchonelliform brachiopod faunas: Constraints on short-term survival and the role of anoxia in the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374, 284-292.	2.3	14
27	Reply to Dorrington: Oxygen concentration and predator escape abilities are important controls on insect size. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, .	7.1	1
28	Paleoecology and geochemistry of Early Triassic (Spathian) microbial mounds and implications for anoxia following the end-Permian mass extinction. Geology, 2012, 40, 715-718.	4.4	49
29	REGIONAL-SCALE MARINE FAUNAL CHANGE IN EASTERN AUSTRALIA DURING PERMIAN CLIMATE FLUCTUATIONS AND ITS RELATIONSHIP TO LOCAL COMMUNITY RESTRUCTURING. Palaios, 2012, 27, 627-635.	1.3	10
30	End-Permian Mass Extinction in the Oceans: An Ancient Analog for the Twenty-First Century?. Annual Review of Earth and Planetary Sciences, 2012, 40, 89-111.	11.0	283
31	Environmental and biotic controls on the evolutionary history of insect body size. Proceedings of the United States of America, 2012, 109, 10927-10930.	7.1	69
32	Lessons from the fossil record: the Ediacaran radiation, the Cambrian radiation, and the end-Permian mass extinction. , 2012, , 52-72.		5
33	Acidification, anoxia, and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology, 2011, 39, 1059-1062.	4.4	166
34	Faunal evidence for a cool boundary current and decoupled regional climate cooling in the Permian of western Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 298, 348-359.	2.3	20
35	Mass Extinctions and Changing Taphonomic Processes. Topics in Geobiology, 2010, , 569-590.	0.5	5
36	The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology, 2009, 35, 32-50.	2.0	157

MATTHEW CLAPHAM

#	Article	IF	CITATIONS
37	WUCHIAPINGIAN (LOPINGIAN, LATE PERMIAN) BRACHIOPODS FROM THE EPISKOPI FORMATION OF HYDRA ISLAND, GREECE. Palaeontology, 2009, 52, 713-743.	2.2	18
38	Phanerozoic Trends in the Global Diversity of Marine Invertebrates. Science, 2008, 321, 97-100.	12.6	643
39	Paleoecology Of Early-Middle Permian Marine Communities In Eastern Australia: Response To Global Climate Change In the Aftermath Of the Late Paleozoic Ice Age. Palaios, 2008, 23, 738-750.	1.3	45
40	Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. GSA Today, 2008, 18, 4.	2.0	894
41	Prolonged Permian–Triassic ecological crisis recorded by molluscan dominance in Late Permian offshore assemblages. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12971-12975.	7.1	41
42	Permian marine paleoecology and its implications for large-scale decoupling of brachiopod and bivalve abundance and diversity during the Lopingian (Late Permian). Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 249, 283-301.	2.3	48
43	Evolutionary Paleoecology of Ediacaran Benthic Marine Animals. , 2006, , 91-114.		19
44	ASSESSING THE ECOLOGICAL DOMINANCE OF PHANEROZOIC MARINE INVERTEBRATES. Palaios, 2006, 21, 431-441.	1.3	52
45	Deep valley incision in the terminal Neoproterozoic (Ediacaran) Johnnie Formation, eastern California, USA: Tectonically or glacially driven?. Precambrian Research, 2005, 141, 154-164.	2.7	25
46	<i>Thectardis avalonensis</i> : A new Ediacaran fossil from the Mistaken Point biota, Newfoundland. Journal of Paleontology, 2004, 78, 1031-1036.	0.8	18
47	THECTARDIS AVALONENSIS: A NEW EDIACARAN FOSSIL FROM THE MISTAKEN POINT BIOTA, NEWFOUNDLAND. Journal of Paleontology, 2004, 78, 1031-1036.	0.8	34
48	Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Canadian Journal of Earth Sciences, 2003, 40, 1375-1391.	1.3	126
49	Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 2003, 29, 527-544.	2.0	150
50	Ediacaran epifaunal tiering. Geology, 2002, 30, 627.	4.4	106