
Simone Capaccioli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9511180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intermittent-contact local dielectric spectroscopy of nanostructured interfaces. Nanotechnology, 2022, , .	2.6	1
2	Arriving at the most plausible interpretation of the dielectric spectra of glycerol with help from quasielastic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi> -ray scattering time-domain interferometry. Physical Review E, 2022, 105, .</mml:math 	2.1	2
3	Molecular dynamic in binary mixtures and polymer blends with large difference in glass transition temperatures of the two components: A critical review. Journal of Non-Crystalline Solids, 2021, 558, 119573.	3.1	19
4	Do we understand the solid-like elastic properties of confined liquids?. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2021288118.	7.1	1
5	Experimental evidence of mosaic structure in strongly supercooled molecular liquids. Nature Communications, 2021, 12, 1867.	12.8	23
6	Specific Interactions and Environment Flexibility Tune Protein Stability under Extreme Crowding. Journal of Physical Chemistry B, 2021, 125, 6103-6111.	2.6	7
7	Tuning-fork-based piezoresponse force microscopy. Nanotechnology, 2021, 32, 445701.	2.6	4
8	The Dynamics of Hydrated Proteins Are the Same as Those of Highly Asymmetric Mixtures of Two Glass-Formers. ACS Omega, 2021, 6, 340-347.	3.5	7
9	Reconsidering the relation of the JG \hat{l}^2 -relaxation to the $\hat{l}\pm$ -relaxation and surface diffusion in ethylcyclohexane. Journal of Non-Crystalline Solids: X, 2021, 11-12, 100070.	1.2	0
10	Evidence of negative thermal expansion in supercooled tantala. Journal of Non-Crystalline Solids, 2021, 577, 121308.	3.1	0
11	Piezoelectric displacement mapping of compliant surfaces by constant-excitation frequency-modulation piezoresponse force microscopy. Nanotechnology, 2020, 31, 075707.	2.6	4
12	Non-local cooperative atomic motions that govern dissipation in amorphous tantala unveiled by dynamical mechanical spectroscopy. Acta Materialia, 2020, 201, 1-6.	7.9	1
13	Isochronal Superposition of the Structural α-Relaxation and Invariance of Its Relation to the β-Relaxation to Changes of Thermodynamic Conditions in Methyl <i>m</i> -Toluate. Journal of Physical Chemistry B, 2020, 124, 6690-6697.	2.6	7
14	Molecular dynamics in the supercooled liquid and glassy states of bezafibrate and binary mixture of fenofibrate. Journal of Non-Crystalline Solids, 2020, 550, 120407.	3.1	2
15	Lateral resolution of electrostatic force microscopy for mapping of dielectric interfaces in ambient conditions. Nanotechnology, 2020, 31, 335710.	2.6	5
16	Clarifying the nature of the Johari-Goldstein β-relaxation and emphasising its fundamental importance. Philosophical Magazine, 2020, 100, 2596-2613.	1.6	17
17	Coincident Correlation between Vibrational Dynamics and Primary Relaxation of Polymers with Strong or Weak Johari-Goldstein Relaxation. Polymers, 2020, 12, 761.	4.5	6
18	The JG β -relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules. Journal of Chemical Physics, 2019, 151, 034504.	3.0	22

#	Article	IF	CITATIONS
19	Mixtures of m-fluoroaniline with apolar aromatic molecules: Phase behaviour, suppression of H-bonded clusters, and local H-bond relaxation dynamics. Journal of Molecular Liquids, 2019, 296, 111998.	4.9	7
20	Including Plastic Strain Into the Discrete Preisachâ€Mayergoyz Space: Application to Granular Media. Journal of Geophysical Research: Solid Earth, 2019, 124, 10983-10998.	3.4	0
21	A microscopic look at the Johari-Goldstein relaxation in a hydrogen-bonded glass-former. Scientific Reports, 2019, 9, 14319.	3.3	24
22	Segmental α-Relaxation for the First Step and Sub-Rouse Modes for the Second Step in Enthalpy Recovery in the Glassy State of Polystyrene. Macromolecules, 2019, 52, 1440-1446.	4.8	23
23	Uncovering a novel transition in the dynamics of proteins in the dry state. Journal of Molecular Liquids, 2019, 286, 110810.	4.9	5
24	How to align a nematic glassy phase – Different conditions – Different results. Journal of Molecular Liquids, 2019, 280, 314-318.	4.9	6
25	Strain-accumulation mechanisms in sands under isotropic stress. Journal of Geophysics and Engineering, 2019, 16, 1139-1150.	1.4	3
26	A semiâ€empirical approach to model pressure dependence of elastic moduli in granular media accounting for variations of coordinationâ€number and Poissonâ€ratio. Geophysical Prospecting, 2019, 67, 872-887.	1.9	1
27	In silico broadband mechanical spectroscopy of amorphous tantala. Physical Review Research, 2019, 1, .	3.6	8
28	High-pressure cell for simultaneous dielectric and neutron spectroscopy. Review of Scientific Instruments, 2018, 89, 023904.	1.3	13
29	Contrasting two different interpretations of the dynamics in binary glass forming mixtures. Journal of Chemical Physics, 2018, 148, 054504.	3.0	23
30	Isochronal superposition and density scaling of the <i>$\hat{l}\pm$</i> -relaxation from pico- to millisecond. Journal of Chemical Physics, 2018, 149, 214503.	3.0	13
31	Direct Experimental Characterization of Contributions from Self-Motion of Hydrogen and from Interatomic Motion of Heavy Atoms to Protein Anharmonicity. Journal of Physical Chemistry B, 2018, 122, 9956-9961.	2.6	7
32	Relations of pressure and temperature dependences of the Johari-Goldstein \hat{l}^2 -relaxation to the $\hat{l}\pm$ -relaxation: Amorphous polymers. AIP Conference Proceedings, 2018, , .	0.4	3
33	Strain Accumulation Mechanisms in Unconsolidated Sediments during Compression. , 2018, , .		1
34	Including plastic behavior in the Preisach-Mayergoyz space to find static and dynamic bulk moduli in granular media. , 2018, , .		2
35	Dynamics of hydrated proteins and bio-protectants: Caged dynamics, β-relaxation, and α-relaxation. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3553-3563.	2.4	27
36	Quantitative explanation of the enhancement of surface mobility of the metallic glass Pd40Cu30Ni10P20 by the Coupling Model. Journal of Non-Crystalline Solids, 2017, 463, 85-89.	3.1	14

#	Article	IF	CITATIONS
37	Direct Evidence of Relaxation Anisotropy Resolved by High Pressure in a Rigid and Planar Glass Former. Journal of Physical Chemistry Letters, 2017, 8, 4341-4346.	4.6	25
38	Critical structural fluctuations of proteins upon thermal unfolding challenge the Lindemann criterion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9361-9366.	7.1	35
39	Thermodynamic Scaling of the Dynamics of a Strongly Hydrogen-Bonded Glass-Former. Scientific Reports, 2017, 7, 1346.	3.3	39
40	Predicting the Pressure Dependence of Elastic Velocities of Dry Granular Assemblies Using a Modified GCT Model. , 2017, , .		1
41	Broadband local dielectric spectroscopy. Applied Physics Letters, 2016, 108, 182906.	3.3	9
42	Coupling of caged molecule dynamics to Johari-Goldstein β-relaxation in metallic glasses. Journal of Applied Physics, 2016, 119, .	2.5	15
43	Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics. Journal of Chemical Physics, 2016, 144, 174502.	3.0	32
44	Thermodynamic scaling of vibrational dynamics and relaxation. Journal of Chemical Physics, 2016, 145, 234904.	3.0	35
45	Double Primary Relaxation in a Highly Anisotropic Orientational Glass-Former with Low-Dimensional Disorder. Journal of Physical Chemistry C, 2016, 120, 10614-10621.	3.1	20
46	Surface Diffusion of Polymer Glasses Redux. Macromolecules, 2016, 49, 7605-7607.	4.8	0
47	Complex Dynamics of a Fluorinated Vinylidene Cyanide Copolymer Highlighted by Dielectric Relaxation Spectroscopy. Macromolecules, 2016, 49, 5104-5114.	4.8	12
48	Molecular relaxations in amorphous phenylbutazone. AIP Conference Proceedings, 2016, , .	0.4	0
49	Sub-Rouse modes in polymer thin films: Coupling to density and responding to physical aging. AIP Conference Proceedings, 2016, , .	0.4	5
50	Probing the Thermal Stability of Lysozyme in Crowded Environments: Tracking Lindemann Criterion. Biophysical Journal, 2016, 110, 213a.	0.5	0
51	Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure. Advanced Drug Delivery Reviews, 2016, 100, 158-182.	13.7	73
52	A perspective on experimental findings and theoretical explanations of novel dynamics at free surface and in freestanding thin films of polystyrene. Philosophical Magazine, 2016, 96, 854-869.	1.6	11
53	Relaxation dynamics of amorphous dibucaine using dielectric studies. AIP Conference Proceedings, 2015, , .	0.4	0
54	Extended model for the interaction of dielectric thin films with an electrostatic force microscope probe. Journal of Applied Physics, 2015, 118, .	2.5	13

#	Article	IF	CITATIONS
55	Coupling of Caged Molecule Dynamics to JG β-Relaxation: I. Journal of Physical Chemistry B, 2015, 119, 8800-8808.	2.6	53
56	Does the Johari–Goldstein β-Relaxation Exist in Polypropylene Glycols?. Macromolecules, 2015, 48, 4151-4157.	4.8	10
57	Reconsidering the Dynamics in Mixtures of Methyltetrahydrofuran with Tristyrene and Polystyrene. Journal of Physical Chemistry B, 2015, 119, 5677-5684.	2.6	12
58	Coupling of Caged Molecule Dynamics to JG β-Relaxation II: Polymers. Journal of Physical Chemistry B, 2015, 119, 12502-12518.	2.6	46
59	Coupling of Caged Molecule Dynamics to JG β-Relaxation III:van der Waals Glasses. Journal of Physical Chemistry B, 2015, 119, 12519-12525.	2.6	42
60	Secondary relaxation dynamics in rigid glass-forming molecular liquids with related structures. Journal of Chemical Physics, 2015, 143, 104505.	3.0	11
61	Vibrational dynamics changes of protein hydration water across the dynamic transition. Journal of Non-Crystalline Solids, 2015, 407, 465-471.	3.1	4
62	Revealing the rich dynamics of glass-forming systems by modification of composition and change of thermodynamic conditions. Journal of Non-Crystalline Solids, 2015, 407, 98-105.	3.1	33
63	Molecular dynamics in amorphous ergocalciferol. , 2014, , .		0
64	Origins of the two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films. Journal of Chemical Physics, 2014, 140, 074903.	3.0	15
65	Study of the cold crystallization of poly(ethylene terephthalate) at the air interface by ATR spectroscopy. European Polymer Journal, 2014, 60, 286-296.	5.4	5
66	Temperature Dependence of the Structural Relaxation Time in Equilibrium below the Nominal <i>T</i> _g : Results from Freestanding Polymer Films. Journal of Physical Chemistry B, 2014, 118, 5608-5614.	2.6	14
67	An explanation of the differences in diffusivity of the components of the metallic glass Pd43Cu27Ni10P20. Journal of Chemical Physics, 2013, 138, 094504.	3.0	23
68	Comment on "A Generalized Rouse Incoherent Scattering Function for Chain Dynamics of Unentangled Polymers in Dynamically Asymmetric Blends― Macromolecules, 2013, 46, 8054-8055.	4.8	4
69	Change of caged dynamics at <i>T g</i> in hydrated proteins: Trend of mean squared displacements after correcting for the methyl-group rotation contribution. Journal of Chemical Physics, 2013, 138, 235102.	3.0	29
70	Nature of the water specific relaxation in hydrated proteins and aqueous mixtures. Chemical Physics, 2013, 424, 37-44.	1.9	30
71	The Viscoelastic Behavior of Rubber and Dynamics of Blends. , 2013, , 193-284.		4
	Response to "Comment on â€~Unified explanation of the anomalous dynamic properties of highly		

Response to a∈œComment on ä∈ Unified explanation of the anomalous dynamic properties of highly asymmetric polymer blendsâ∈™â€‰â€•[J. Chem. Phys. 138, 197101 (2013)]. Journal of Chemical Physics, 2013, 1**3**& 5 197102.

#	Article	IF	CITATIONS
73	Unified explanation of the anomalous dynamic properties of highly asymmetric polymer blends. Journal of Chemical Physics, 2013, 138, 054903.	3.0	32
74	Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model. Journal of Chemical Physics, 2012, 137, 034511.	3.0	82
75	Mechanism of fast surface self-diffusion of an organic glass. Physical Review E, 2012, 86, 051503.	2.1	53
76	Emergence of glassy-like dynamics in an orientationally ordered phase. Physical Review B, 2012, 85, .	3.2	43
77	Ultrathin polymer films: Interfacial and annealing dependence of confinement effects. , 2012, , .		Ο
78	Many-Body Nature of Relaxation Processes in Glass-Forming Systems. Journal of Physical Chemistry Letters, 2012, 3, 735-743.	4.6	171
79	Interfacial and Annealing Effects on Primary α-Relaxation of Ultrathin Polymer Films Investigated at Nanoscale. Macromolecules, 2012, 45, 2138-2144.	4.8	46
80	Evidence of Coexistence of Change of Caged Dynamics at <i>T</i> _g and the Dynamic Transition at <i>T</i> _d in Solvated Proteins. Journal of Physical Chemistry B, 2012, 116, 1745-1757.	2.6	61
81	Effect of Confinement on Structural Relaxation in Ultrathin Polymer Films Investigated by Local Dielectric Spectroscopy. Macromolecules, 2011, 44, 6588-6593.	4.8	37
82	The role of primitive relaxation in the dynamics of aqueous mixtures, nano-confined water and hydrated proteins. Journal of Non-Crystalline Solids, 2011, 357, 641-654.	3.1	40
83	The Johari–Goldstein β-relaxation of glass-forming binary mixtures. Journal of Non-Crystalline Solids, 2011, 357, 251-257.	3.1	26
84	Resolving the controversy on the glass transition temperature of water?. Journal of Chemical Physics, 2011, 135, 104504.	3.0	95
85	Temperature and pressure dependence of secondary process in an epoxy system. Journal of Chemical Physics, 2011, 134, 044510.	3.0	11
86	Resolving the ambiguity of the dynamics of water and clarifying its role in hydrated proteins. Philosophical Magazine, 2011, 91, 1809-1835.	1.6	54
87	Resolution of problems in soft matter dynamics by combining calorimetry and other spectroscopies. Journal of Thermal Analysis and Calorimetry, 2010, 99, 123-138.	3.6	18
88	Enhanced crystallization kinetics in poly(ethylene terephthalate) thin films evidenced by infrared spectroscopy. Polymer, 2010, 51, 3660-3668.	3.8	26
89	α -relaxation dynamics of orientanionally disordered mixed crystals composed of Cl-adamantane and CN-adamantane. Journal of Chemical Physics, 2010, 132, 164516.	3.0	22
90	Local dielectric spectroscopy of nanocomposite materials interfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C4D11-C4D17.	1.2	37

#	Article	IF	CITATIONS
91	Correlation of nonexponentiality with dynamic heterogeneity from four-point dynamic susceptibility χ4(t) and its approximation χT(t). Journal of Chemical Physics, 2010, 133, 124507.	3.0	38
92	Recent progress in understanding relaxation in complex systems. Journal of Non-Crystalline Solids, 2010, 356, 535-541.	3.1	18
93	Dynamics of orientationally disordered mixed crystal sharing Cl-adamantane and CN-adamantane. Journal of Non-Crystalline Solids, 2010, 356, 621-624.	3.1	2
94	Dynamic Crossover of Water Relaxation in Aqueous Mixtures: Effect of Pressure. Journal of Physical Chemistry Letters, 2010, 1, 1170-1175.	4.6	22
95	Evidences of a Common Scaling Under Cooling and Compression for Slow and Fast Relaxations: Relevance of Local Modes for the Glass Transition. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 39-52.	0.5	Ο
96	The Nature of Glass: Somethings Are Clear. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 3-30.	0.5	1
97	Electrostatic force microscopy and potentiometry of realistic nanostructured systems. Journal of Applied Physics, 2009, 105, 054301.	2.5	13
98	Glass Transitions in Aqueous Solutions of Protein (Bovine Serum Albumin). Journal of Physical Chemistry B, 2009, 113, 14448-14456.	2.6	116
99	Does the entropy and volume dependence of the structural α-relaxation originate from the Johari–Goldstein β-relaxation?. Journal of Non-Crystalline Solids, 2009, 355, 705-711.	3.1	26
100	Relation between configurational entropy and relaxation dynamics of glass-forming systems under volume and temperature reduction. Journal of Non-Crystalline Solids, 2009, 355, 753-758.	3.1	13
101	The Challenging Problem of Glass Transition. Journal of the American Ceramic Society, 2008, 91, 709-714.	3.8	12
102	The Glass Transition and Dielectric Secondary Relaxation of Fructoseâ^'Water Mixtures. Journal of Physical Chemistry B, 2008, 112, 15470-15477.	2.6	52
103	Dynamically Correlated Regions and Configurational Entropy in Supercooled Liquids. Journal of Physical Chemistry B, 2008, 112, 10652-10658.	2.6	126
104	Recent advances in fundamental understanding of glass transition. Journal of Non-Crystalline Solids, 2008, 354, 5085-5088.	3.1	22
105	Interdependence of Primary and Johariâ^'Goldstein Secondary Relaxations in Glass-Forming Systems. Journal of Physical Chemistry B, 2008, 112, 4470-4473.	2.6	104
106	Is the Johari-Goldstein Î ² -relaxation universal?. Philosophical Magazine, 2008, 88, 4007-4013.	1.6	34
107	The Protein "Glass―Transition and the Role of the Solvent. Journal of Physical Chemistry B, 2008, 112, 3826-3832.	2.6	80
108	Critical Issues of Current Research on the Dynamics Leading to Glass Transition. Journal of Physical Chemistry B, 2008, 112, 16035-16049.	2.6	77

#	Article	IF	CITATIONS
109	Influence of Confinement and Substrate Interaction on the Crystallization Kinetics of PET Ultrathin Films. AIP Conference Proceedings, 2008, , .	0.4	0
110	Relationship between structural and secondary relaxation in glass formers: Ratio between glass transition temperature and activation energy. Philosophical Magazine, 2008, 88, 4063-4069.	1.6	10
111	The component dynamics of miscible binary mixtures of glass formers: New features. Philosophical Magazine, 2008, 88, 4047-4055.	1.6	8
112	Impact of the application of pressure on the fundamental understanding of glass transition. Journal of Physics Condensed Matter, 2008, 20, 244101.	1.8	22
113	Guides to solving the glass transition problem. Journal of Physics Condensed Matter, 2008, 20, 244125.	1.8	22
114	Universal Secondary Relaxation of Water in Aqueous Mixtures, in Nano-Confinement, and in Hydrated Proteins. AIP Conference Proceedings, 2008, , .	0.4	3
115	Interdependence of Primary and Secondary Relaxations in Glass-Forming Systems Undergoing Compression and Cooling. AIP Conference Proceedings, 2008, , .	0.4	Ο
116	New experimental evidence about secondary processes in phenylphthalein-dimethylether and 1,1′-bis(p-methoxyphenyl)cyclohexane. Journal of Chemical Physics, 2007, 127, 114507.	3.0	12
117	Relaxation dynamics intert-butylpyridine/tristyrene mixture investigated by broadband dielectric spectroscopy. Journal of Chemical Physics, 2007, 127, 174502.	3.0	27
118	Effect of chain length on fragility and thermodynamic scaling of the local segmental dynamics in poly(methylmethacrylate). Journal of Chemical Physics, 2007, 126, 184903.	3.0	51
119	Correlation of structural and Johari–Goldstein relaxations in systems vitrifying along isobaric and isothermal paths. Journal of Physics Condensed Matter, 2007, 19, 205133.	1.8	29
120	Effect of pressure on relaxation dynamics at different time scales in supercooled systems. Philosophical Magazine, 2007, 87, 681-689.	1.6	9
121	Polarization fluctuations in an epoxy system above and below the glass transition. , 2007, , .		Ο
122	Effect of temperature and pressure on the structural (α-) and the true Johari–Goldstein (β-) relaxation in binary mixtures. Journal of Non-Crystalline Solids, 2007, 353, 4273-4277.	3.1	16
123	Applications of the rheo-dielectric technique. Journal of Non-Crystalline Solids, 2007, 353, 4267-4272.	3.1	22
124	Dynamics of Laponite solutions: An interpretation within the coupling model scheme. Journal of Non-Crystalline Solids, 2007, 353, 3885-3890.	3.1	6
125	Effect of thermodynamic history on secondary relaxation in the glassy state. Journal of Non-Crystalline Solids, 2007, 353, 4313-4317.	3.1	15
126	Secondary dynamics in glass formers: Relation with the structural dynamics and the glass transition. Journal of Non-Crystalline Solids, 2007, 353, 4278-4282.	3.1	32

#	Article	IF	CITATIONS
127	Relation between the dispersion of $\hat{I}\pm$ -relaxation and the time scale of \hat{I}^2 -relaxation at the glass transition. Journal of Non-Crystalline Solids, 2007, 353, 3984-3988.	3.1	28
128	Molecular Dynamics of Atactic Poly(propylene) Investigated by Broadband Dielectric Spectroscopy. Macromolecules, 2007, 40, 1786-1788.	4.8	32
129	Excess wing and Johari–Goldstein relaxation in binary mixtures of glass formers. Philosophical Magazine, 2007, 87, 643-650.	1.6	3
130	On the relevance of the coupling model to experiments. Journal of Physics Condensed Matter, 2007, 19, 205114.	1.8	32
131	The Johariâ^'Goldstein β-Relaxation of Water. Journal of Physical Chemistry B, 2007, 111, 8197-8209.	2.6	136
132	Investigation of structural relaxation and surface modification of ultrathin films of poly(ethylene) Tj ETQq0 0 0 r	gBT_/Over 2.0	lock 10 Tf 50 5
133	What Can We Learn by Squeezing a Liquid?. Journal of Physical Chemistry B, 2006, 110, 11491-11495.	2.6	23
134	Comment on "A Molecular Dynamics Simulation Study of Relaxation Processes in the Dynamical Fast Component of Miscible Polymer Blends― Macromolecules, 2006, 39, 8543-8543.	4.8	15
135	Secondary dielectric relaxation in decahydroisoquinoline–cyclohexane mixture. Journal of Non-Crystalline Solids, 2006, 352, 4685-4689.	3.1	10
136	Genuine Johari–Goldstein β-relaxations in glass-forming binary mixtures. Journal of Non-Crystalline Solids, 2006, 352, 4643-4648.	3.1	45
137	Polarization fluctuations near the glass transition. Journal of Non-Crystalline Solids, 2006, 352, 4920-4927.	3.1	5
138	Dispersion of the Structural Relaxation and the Vitrification of Liquids. Advances in Chemical Physics, 2006, , 497-593.	0.3	37
139	Effect of thermodynamic history on secondary relaxation in glassy phenolphthalein-dimethyl-ether. Physical Review B, 2006, 73, .	3.2	14
140	Dielectric secondary relaxations in polypropylene glycols. Journal of Chemical Physics, 2006, 125, 044904.	3.0	35
141	Fluctuations In Electrohydrodynamic Instability. AIP Conference Proceedings, 2005, , .	0.4	0
142	Emergence of a new feature in the high pressure–high temperature relaxation spectrum of tri-propylene glycol. Journal of Chemical Physics, 2005, 122, 061102.	3.0	13
143	Two secondary modes in decahydroisoquinoline: Which one is the true Johari Goldstein process?. Journal of Chemical Physics, 2005, 122, 234506.	3.0	48
144	Reply to "Comment on â€~Correlation between configurational entropy and structural relaxation time in glass-forming liquids' ― Physical Review B, 2005, 71, .	3.2	5

#	Article	IF	CITATIONS
145	Relation between theα-Relaxation and Johariâ^'Goldsteinβ-Relaxation of a Component in Binary Miscible Mixtures of Glass-Formers. Journal of Physical Chemistry B, 2005, 109, 9727-9735.	2.6	67
146	Effect of temperature and volume on structural relaxation time: Interpretation in terms of decrease of configurational entropy. Journal of Non-Crystalline Solids, 2005, 351, 2611-2615.	3.1	8
147	Identifying the genuine Johari–Goldstein β-relaxation by cooling, compressing, and aging small molecular glass-formers. Journal of Non-Crystalline Solids, 2005, 351, 2643-2651.	3.1	61
148	Do Theories of the Glass Transition, in which the Structural Relaxation Time Does Not Define the Dispersion of the Structural Relaxation, Need Revision?. Journal of Physical Chemistry B, 2005, 109, 17356-17360.	2.6	210
149	Dynamics of supercooled and glassy dipropyleneglycol dibenzoate as functions of temperature and aging: Interpretation within the coupling model framework. Journal of Chemical Physics, 2004, 120, 4808-4815.	3.0	82
150	Adam–Gibbs model for the supercooled dynamics in the ortho-terphenyl ortho-phenylphenol mixture. Journal of Chemical Physics, 2004, 120, 10640-10646.	3.0	53
151	Molecular dynamics study of the thermal and the density effects on the local and the large-scale motion of polymer melts: Scaling properties and dielectric relaxation. Journal of Chemical Physics, 2004, 120, 437-453.	3.0	38
152	Inter-chain and intra-chain hopping transport in conducting polymers. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 148-151.	0.8	7
153	Effect of the isobaric and isothermal reductions in excess and configurational entropies on glass-forming dynamics. Philosophical Magazine, 2004, 84, 1513-1519.	1.6	3
154	Pressure and temperature dependence of structural relaxation dynamics in polymers: a thermodynamic interpretation. Journal of Physics Condensed Matter, 2004, 16, 6597-6608.	1.8	23
155	Relation between the activation energy of the Johari-Goldstein \hat{I}^2 relaxation and T_{g} of glass formers. Physical Review E, 2004, 69, 031501.	2.1	223
156	Changes of the Primary and Secondary Relaxation of Sorbitol in Mixtures with Glycerol. Journal of Physical Chemistry B, 2004, 108, 11118-11123.	2.6	27
157	Broad Band Dielectric Analysis Of Bituminous Concrete. Materials Research Innovations, 2004, 8, 36-40.	2.3	6
158	Correlation between configurational entropy and structural relaxation time in glass-forming liquids. Physical Review B, 2003, 67, .	3.2	58
159	Relaxation processes in an epoxy resin studied by time-resolved optical Kerr effect. Physical Review E, 2002, 66, 011502.	2.1	10
160	Relation between structural relaxation time and configurational entropy: A test of the Adam-Gibbs model on epoxy resins. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 339-346.	0.6	10
161	Pressure and temperature dependences of the dynamics of glass formers studied by broad-band dielectric spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 651-662.	0.6	12
162	Structural relaxation process in glass-forming liquids: A comparison between the optical Kerr effect and dielectric spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 553-560.	0.6	3

#	Article	IF	CITATIONS
163	Two crossover regions in the dynamics of glass forming epoxy resins. Journal of Chemical Physics, 2002, 117, 2435-2448.	3.0	108
164	Temperature and pressure behavior of the structural relaxation time in glass formers. Journal of Non-Crystalline Solids, 2002, 307-310, 264-269.	3.1	9
165	Influence of the end groups on dynamics of propylene glycol oligomers studied by wideband dielectric spectroscopy. Journal of Non-Crystalline Solids, 2002, 307-310, 238-245.	3.1	13
166	Advances in understanding the relationship between rock wettability and high-frequency dielectric response. Journal of Petroleum Science and Engineering, 2002, 33, 87-99.	4.2	16
167	Relation between structural relaxation time and configurational entropy: a test of the Adam-Gibbs model on epoxy resins. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 339-346.	0.6	2
168	Structural relaxation process in glass-forming liquids: a comparison between the optical Kerr effect and dielectric spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 553-560.	0.6	1
169	Pressure and temperature dependences of the dynamics of glass formers studied by broad-band dielectric spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 651-662.	0.6	7
170	Effect of water inclusions on charge transport and polarization in porous media. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8, 454-460.	2.9	14
171	Glass transition of an epoxy resin. A wideband dielectric investigation. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8, 373-376.	2.9	9
172	Influence of temperature and pressure on the dynamics of glass formers explored by dielectric spectroscopy. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8, 395-400.	2.9	6
173	Effect of pressure on the dynamics of glass formers. Physical Review E, 2001, 64, 041504.	2.1	43
174	Pressure dependence of structural relaxation time in terms of the Adam-Gibbs model. Physical Review E, 2001, 63, 031207.	2.1	78
175	Study of the relaxation behaviour of a tri-epoxy compound in the supercooled and glassy state by broadband dielectric spectroscopy. Journal of Physics Condensed Matter, 2001, 13, 4405-4419.	1.8	24
176	Influence of temperature, pressure and connectivity on the dynamics of a glass-forming system investigated by dielectric spectroscopy. Macromolecular Symposia, 2001, 171, 253-264.	0.7	2
177	Electrical Measurements in the 100 Hz to 10 GHz Frequency Range for Efficient Rock Wettability Determination. SPE Journal, 2001, 6, 80-88.	3.1	24
178	Influence of Molecular Characteristics on Dielectric Relaxation of Propylene Glycol Oligomers. Macromolecular Symposia, 2001, 169, 147-156.	0.7	0
179	Dielectric analysis of the linear polymerization of an epoxy resin. Polymer International, 2001, 50, 545-551.	3.1	39
180	Characterization of electrochemically synthesized alkylpyrrole intrinsically conducting polymers. Polymers for Advanced Technologies, 2000, 11, 27-39.	3.2	6

#	Article	IF	CITATIONS
181	Check of the temperature- and pressure-dependent Cohen–Grest equation. Chemical Physics Letters, 2000, 320, 113-117.	2.6	32
182	Application of impedance spectroscopy to the study of organic multilayer devices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 171, 159-166.	4.7	18
183	Influence of the wettability on the electrical response of microporous systems. Journal Physics D: Applied Physics, 2000, 33, 1036-1047.	2.8	25
184	Dynamics of a glass-forming triepoxide studied by dielectric spectroscopy. Journal of Physics Condensed Matter, 1999, 11, 10297-10314.	1.8	27
185	Changes in the dynamics of supercooled systems revealed by dielectric spectroscopy. Journal of Chemical Physics, 1999, 111, 9343-9351.	3.0	66
186	Temperature and pressure dependences of the relaxation dynamics of supercooled systems explored by dielectric spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 1953-1963.	0.6	12
187	Dynamics of epoxies: a full dielectric analysis by wideband spectroscopy. Journal of Non-Crystalline Solids, 1998, 235-237, 576-579.	3.1	22
188	Dielectric response analysis of a conducting polymer dominated by the hopping charge transport. Journal of Physics Condensed Matter, 1998, 10, 5595-5617.	1.8	102
189	<title>Hopping charge transport in conducting polymers studied by dc conduction and dielectric response analysis</title> . , 1998, 3471, 162.		0
190	Characterization of Rock Wettability Though Dielectric Measurements. Oil & Gas Science & Technology, 1998, 53, 771-783.	0.2	22
191	<title>Dielectric relaxation phenomena in polymers: recent findings by chemical vitrification experiments</title> ., 1997,,.		0
192	Dielectric behaviour versus temperature of a monoepoxide. Journal of Physics Condensed Matter, 1997, 9, 6199-6216.	1.8	38