T L Delworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9510542/publications.pdf Version: 2024-02-01

TI DELWORTH

#	Article	IF	CITATIONS
1	A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 64, 10963.	1.7	54
2	Mechanisms of Regional Arctic Sea Ice Predictability in Two Dynamical Seasonal Forecast Systems. Journal of Climate, 2022, 35, 4207-4231.	3.2	6
3	Seasonal-to-Decadal Variability and Prediction of the Kuroshio Extension in the GFDL Coupled Ensemble Reanalysis and Forecasting System. Journal of Climate, 2022, 35, 3515-3535.	3.2	8
4	Roles of Meridional Overturning in Subpolar Southern Ocean SST Trends: Insights from Ensemble Simulations. Journal of Climate, 2022, 35, 1577-1596.	3.2	3
5	Skillful Seasonal Prediction of North American Summertime Heat Extremes. Journal of Climate, 2022, 35, 4331-4345.	3.2	6
6	Increasing Frequency of Anomalous Precipitation Events in Japan Detected by a Deep Learning Autoencoder. Earth's Future, 2022, 10, .	6.3	2
7	Subseasonal-to-Seasonal Arctic Sea Ice Forecast Skill Improvement from Sea Ice Concentration Assimilation. Journal of Climate, 2022, 35, 4233-4252.	3.2	9
8	When Will Humanity Notice Its Influence on Atmospheric Rivers?. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
9	The Dependence of Internal Multidecadal Variability in the Southern Ocean on the Ocean Background Mean State. Journal of Climate, 2021, 34, 1061-1080.	3.2	8
10	The Alaskan Summer 2019 Extreme Heat Event: The Role of Anthropogenic Forcing, and Projections of the Increasing Risk of Occurrence. Earth's Future, 2021, 9, e2021EF002163.	6.3	2
11	Are Multiseasonal Forecasts of Atmospheric Rivers Possible?. Geophysical Research Letters, 2021, 48, e2021GL094000.	4.0	8
12	Seasonal predictability of baroclinic wave activity. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	8
13	Natural variability vs forced signal in the 2015–2019 Central American drought. Climatic Change, 2021, 168, 1.	3.6	21
14	On the Development of GFDL's Decadal Prediction System: Initialization Approaches and Retrospective Forecast Assessment. Journal of Advances in Modeling Earth Systems, 2021, 13, .	3.8	14
15	Linking ITCZ Migrations to the AMOC and North Atlantic/Pacific SST Decadal Variability. Journal of Climate, 2020, 33, 893-905.	3.2	26
16	Increasing risk of another Cape Town "Day Zero―drought in the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29495-29503.	7.1	64
17	North Atlantic climate far more predictable than models imply. Nature, 2020, 583, 796-800.	27.8	158
18	Detected climatic change in global distribution of tropical cyclones. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10706-10714.	7.1	123

#	Article	IF	CITATIONS
19	A Mechanism for the Arctic Sea Ice Spring Predictability Barrier. Geophysical Research Letters, 2020, 47, e2020GL088335.	4.0	29
20	Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 2020, 10, 277-286.	18.8	436
21	SPEAR: The Next Generation GFDL Modeling System for Seasonal to Multidecadal Prediction and Projection. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001895.	3.8	94
22	GFDL's SPEAR Seasonal Prediction System: Initialization and Ocean Tendency Adjustment (OTA) for Coupled Model Predictions. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002149.	3.8	27
23	Tropical cyclone sensitivities to CO2 doubling: roles of atmospheric resolution, synoptic variability and background climate changes. Climate Dynamics, 2019, 53, 5999-6033.	3.8	114
24	On the Mechanisms of the Active 2018 Tropical Cyclone Season in the North Pacific. Geophysical Research Letters, 2019, 46, 12293-12302.	4.0	15
25	Robust skill of decadal climate predictions. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	136
26	Modulation of Arctic Sea Ice Loss by Atmospheric Teleconnections from Atlantic Multidecadal Variability. Journal of Climate, 2019, 32, 1419-1441.	3.2	32
27	Natural variability of Southern Ocean convection as a driver of observed climate trends. Nature Climate Change, 2019, 9, 59-65.	18.8	98
28	Potential for western US seasonal snowpack prediction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1180-1185.	7.1	30
29	Impacts of the Atlantic Multidecadal Variability on North American Summer Climate and Heat Waves. Journal of Climate, 2018, 31, 3679-3700.	3.2	57
30	Dominant Role of Atlantic Multidecadal Oscillation in the Recent Decadal Changes in Western North Pacific Tropical Cyclone Activity. Geophysical Research Letters, 2018, 45, 354-362.	4.0	75
31	Detectability of Decadal Anthropogenic Hydroclimate Changes over North America. Journal of Climate, 2018, 31, 2579-2597.	3.2	10
32	Robustness of anthropogenically forced decadal precipitation changes projected for the 21st century. Nature Communications, 2018, 9, 1150.	12.8	16
33	Improved Simulations of Tropical Pacific Annualâ€Mean Climate in the GFDL FLOR and HiFLOR Coupled GCMs. Journal of Advances in Modeling Earth Systems, 2018, 10, 3176-3220.	3.8	20
34	Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science, 2018, 362, 794-799.	12.6	70
35	Predicted Chance That Global Warming Will Temporarily Exceed 1.5°C. Geophysical Research Letters, 2018, 45, 11,895.	4.0	31
36	On the seasonal prediction of the western United States El Niño precipitation pattern during the 2015/16 winter. Climate Dynamics, 2018, 51, 3765-3783.	3.8	17

#	Article	IF	CITATIONS
37	The Influence of CO ₂ Forcing on North American Monsoon Moisture Surges. Journal of Climate, 2018, 31, 7949-7968.	3.2	15
38	The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean. Climate Dynamics, 2017, 48, 2065-2085.	3.8	19
39	The Central Role of Ocean Dynamics in Connecting the North Atlantic Oscillation to the Extratropical Component of the Atlantic Multidecadal Oscillation. Journal of Climate, 2017, 30, 3789-3805.	3.2	122
40	Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Progress in Oceanography, 2017, 152, 15-49.	3.2	165
41	Seasonal Prediction Skill of Northern Extratropical Surface Temperature Driven by the Stratosphere. Journal of Climate, 2017, 30, 4463-4475.	3.2	37
42	Estimating Decadal Predictability for the Southern Ocean Using the GFDL CM2.1 Model. Journal of Climate, 2017, 30, 5187-5203.	3.2	10
43	Dominant Role of Subtropical Pacific Warming in Extreme Eastern Pacific Hurricane Seasons: 2015 and the Future. Journal of Climate, 2017, 30, 243-264.	3.2	79
44	Assessing the Climate Impacts of the Observed Atlantic Multidecadal Variability Using the GFDL CM2.1 and NCAR CESM1 Global Coupled Models. Journal of Climate, 2017, 30, 2785-2810.	3.2	170
45	Weakening of the North American monsoon with global warming. Nature Climate Change, 2017, 7, 806-812.	18.8	105
46	Diagnosis of Decadal Predictability of Southern Ocean Sea Surface Temperature in the GFDL CM2.1 Model. Journal of Climate, 2017, 30, 6309-6328.	3.2	28
47	Origins of Atlantic decadal swings. Nature, 2017, 548, 284-285.	27.8	28
48	Simulated Response of the Pacific Decadal Oscillation to Climate Change. Journal of Climate, 2016, 29, 5999-6018.	3.2	56
49	Enhanced warming of the <scp>N</scp> orthwest <scp>A</scp> tlantic <scp>O</scp> cean under climate change. Journal of Geophysical Research: Oceans, 2016, 121, 118-132.	2.6	348
50	Detection, Attribution, and Projection of Regional Rainfall Changes on (Multi-) Decadal Time Scales: A Focus on Southeastern South America. Journal of Climate, 2016, 29, 8515-8534.	3.2	21
51	Seasonal Forecasts of Major Hurricanes and Landfalling Tropical Cyclones using a High-Resolution GFDL Coupled Climate Model. Journal of Climate, 2016, 29, 7977-7989.	3.2	64
52	The Resolution Dependence of Contiguous U.S. Precipitation Extremes in Response to CO2 Forcing. Journal of Climate, 2016, 29, 7991-8012.	3.2	74
53	Impact of the Antarctic bottom water formation on the Weddell Gyre and its northward propagation characteristics in GFDL CM2.1 model. Journal of Geophysical Research: Oceans, 2016, 121, 5825-5846.	2.6	14
54	Simulated Connections between ENSO and Tropical Cyclones near Guam in a High-Resolution GFDL Coupled Climate Model: Implications for Seasonal Forecasting. Journal of Climate, 2016, 29, 8231-8248.	3.2	3

#	Article	IF	CITATIONS
55	The Impact of Horizontal Resolution on North American Monsoon Gulf of California Moisture Surges in a Suite of Coupled Global Climate Models. Journal of Climate, 2016, 29, 7911-7936.	3.2	32
56	Influences of Natural Variability and Anthropogenic Forcing on the Extreme 2015 Accumulated Cyclone Energy in the Western North Pacific. Bulletin of the American Meteorological Society, 2016, 97, S131-S135.	3.3	29
57	The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nature Geoscience, 2016, 9, 509-512.	12.9	197
58	The Roles of Radiative Forcing, Sea Surface Temperatures, and Atmospheric and Land Initial Conditions in U.S. Summer Warming Episodes. Journal of Climate, 2016, 29, 4121-4135.	3.2	36
59	Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulation― Science, 2016, 352, 1527-1527.	12.6	136
60	Improved Simulation of Tropical Cyclone Responses to ENSO in the Western North Pacific in the High-Resolution GFDL HiFLOR Coupled Climate Model*. Journal of Climate, 2016, 29, 1391-1415.	3.2	69
61	The Impact of the North Atlantic Oscillation on Climate through Its Influence on the Atlantic Meridional Overturning Circulation. Journal of Climate, 2016, 29, 941-962.	3.2	144
62	Simulation and Prediction of Category 4 and 5 Hurricanes in the High-Resolution GFDL HiFLOR Coupled Climate Model*. Journal of Climate, 2015, 28, 9058-9079.	3.2	181
63	Extreme North America Winter Storm Season of 2013/14: Roles of Radiative Forcing and the Global Warming Hiatus. Bulletin of the American Meteorological Society, 2015, 96, S25-S28.	3.3	17
64	Investigating the Influence of Anthropogenic Forcing and Natural Variability on the 2014 Hawaiian Hurricane Season. Bulletin of the American Meteorological Society, 2015, 96, S115-S119.	3.3	39
65	The Seasonality of the Great Plains Low-Level Jet and ENSO Relationship. Journal of Climate, 2015, 28, 4525-4544.	3.2	54
66	Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models. Journal of Climate, 2015, 28, 952-977.	3.2	292
67	Seasonal Predictability of Extratropical Storm Tracks in GFDL's High-Resolution Climate Prediction Model. Journal of Climate, 2015, 28, 3592-3611.	3.2	71
68	Improved Seasonal Prediction of Temperature and Precipitation over Land in a High-Resolution GFDL Climate Model. Journal of Climate, 2015, 28, 2044-2062.	3.2	141
69	A Link between the Hiatus in Global Warming and North American Drought. Journal of Climate, 2015, 28, 3834-3845.	3.2	91
70	Analysis of the Characteristics and Mechanisms of the Pacific Decadal Oscillation in a Suite of Coupled Models from the Geophysical Fluid Dynamics Laboratory. Journal of Climate, 2015, 28, 7678-7701.	3.2	58
71	Towards predictive understanding of regional climate change. Nature Climate Change, 2015, 5, 921-930.	18.8	253
72	Has coarse ocean resolution biased simulations of transient climate sensitivity?. Geophysical Research Letters, 2014, 41, 8522-8529.	4.0	88

#	Article	IF	CITATIONS
73	Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nature Geoscience, 2014, 7, 583-587.	12.9	131
74	Reply to Comments on "Multiyear Predictions of North Atlantic Hurricane Frequency: Promise and Limitations― Journal of Climate, 2014, 27, 490-492.	3.2	2
75	Predicting a Decadal Shift in North Atlantic Climate Variability Using the GFDL Forecast System. Journal of Climate, 2014, 27, 6472-6496.	3.2	84
76	ENSO Modulation: Is It Decadally Predictable?. Journal of Climate, 2014, 27, 2667-2681.	3.2	126
77	On the Seasonal Forecasting of Regional Tropical Cyclone Activity. Journal of Climate, 2014, 27, 7994-8016.	3.2	340
78	Tropical Cyclone Simulation and Response to CO2 Doubling in the GFDL CM2.5 High-Resolution Coupled Climate Model. Journal of Climate, 2014, 27, 8034-8054.	3.2	115
79	Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nature Geoscience, 2014, 7, 834-840.	12.9	246
80	A study of impact of the geographic dependence of observing system on parameter estimation with an intermediate coupled model. Climate Dynamics, 2013, 40, 1789-1798.	3.8	24
81	An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Climate Dynamics, 2013, 40, 775-803.	3.8	130
82	Controls of Global Snow under a Changed Climate. Journal of Climate, 2013, 26, 5537-5562.	3.2	100
83	Impact of climate warming on upper layer of the Bering Sea. Climate Dynamics, 2013, 40, 327-340.	3.8	11
84	A verification framework for interannual-to-decadal predictions experiments. Climate Dynamics, 2013, 40, 245-272.	3.8	254
85	The Atlantic Meridional Heat Transport at 26.5°N and Its Relationship with the MOC in the RAPID Array and the GFDL and NCAR Coupled Models. Journal of Climate, 2013, 26, 4335-4356.	3.2	67
86	Have Aerosols Caused the Observed Atlantic Multidecadal Variability?. Journals of the Atmospheric Sciences, 2013, 70, 1135-1144.	1.7	282
87	Response to CO2 Doubling of the Atlantic Hurricane Main Development Region in a High-Resolution Climate Model. Journal of Climate, 2013, 26, 4322-4334.	3.2	5
88	A Predictable AMO-Like Pattern in the GFDL Fully Coupled Ensemble Initialization and Decadal Forecasting System. Journal of Climate, 2013, 26, 650-661.	3.2	97
89	Multiyear Predictions of North Atlantic Hurricane Frequency: Promise and Limitations. Journal of Climate, 2013, 26, 5337-5357.	3.2	57
90	Impact of Enthalpy-Based Ensemble Filtering Sea Ice Data Assimilation on Decadal Predictions: Simulation with a Conceptual Pycnocline Prediction Model. Journal of Climate, 2013, 26, 2368-2378.	3.2	6

#	Article	IF	CITATIONS
91	Comment on "Multiyear Prediction of Monthly Mean Atlantic Meridional Overturning Circulation at 26.5°N― Science, 2012, 338, 604-604.	12.6	8
92	Past, Present, and Future Changes in the Atlantic Meridional Overturning Circulation. Bulletin of the American Meteorological Society, 2012, 93, 1663-1676.	3.3	153
93	Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model. Journal of Climate, 2012, 25, 2755-2781.	3.2	454
94	Impact of Geographic-Dependent Parameter Optimization on Climate Estimation and Prediction: Simulation with an Intermediate Coupled Model. Monthly Weather Review, 2012, 140, 3956-3971.	1.4	33
95	Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2.1 climate model. Geophysical Research Letters, 2012, 39, .	4.0	75
96	Biases in the Atlantic ITCZ in Seasonal–Interannual Variations for a Coarse- and a High-Resolution Coupled Climate Model. Journal of Climate, 2012, 25, 5494-5511.	3.2	59
97	Multidecadal variability of the North Brazil Current and its connection to the Atlantic meridional overturning circulation. Journal of Geophysical Research, 2011, 116, .	3.3	51
98	Predicting Atlantic meridional overturning circulation (AMOC) variations using subsurface and surface fingerprints. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 1895-1903.	1.4	23
99	Sensitivity of the North Atlantic Ocean Circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model. Journal of Geophysical Research, 2011, 116, .	3.3	67
100	On the use of IPCC-class models to assess the impact of climate on Living Marine Resources. Progress in Oceanography, 2011, 88, 1-27.	3.2	272
101	On the observed relationship between the Pacific Decadal Oscillation and the Atlantic Multi-decadal Oscillation. Journal of Oceanography, 2011, 67, 27-35.	1.7	73
102	Distinguishing the Roles of Natural and Anthropogenically Forced Decadal Climate Variability. Bulletin of the American Meteorological Society, 2011, 92, 141-156.	3.3	125
103	Impact of the Atlantic Meridional Overturning Circulation (AMOC) on Arctic Surface Air Temperature and Sea Ice Variability. Journal of Climate, 2011, 24, 6573-6581.	3.2	138
104	The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. Journal of Climate, 2011, 24, 3484-3519.	3.2	887
105	The Role of Mesoscale Eddies in the Rectification of the Southern Ocean Response to Climate Change. Journal of Physical Oceanography, 2010, 40, 1539-1557.	1.7	183
106	Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing. Journal of Climate, 2010, 23, 2418-2427.	3.2	383
107	The Role of Mesoscale Eddies in the Remote Oceanic Response to Altered Southern Hemisphere Winds. Journal of Physical Oceanography, 2010, 40, 2348-2354.	1.7	65
108	Impact of Common Sea Surface Temperature Anomalies on Global Drought and Pluvial Frequency. Journal of Climate, 2010, 23, 485-503.	3.2	41

#	Article	IF	CITATIONS
109	The Adequacy of Observing Systems in Monitoring the Atlantic Meridional Overturning Circulation and North Atlantic Climate. Journal of Climate, 2010, 23, 5311-5324.	3.2	29
110	Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophysical Research Letters, 2010, 37, .	4.0	43
111	Correction to "Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints― Geophysical Research Letters, 2010, 37, n/a-n/a.	4.0	0
112	Toward understanding the dust deposition in Antarctica during the Last Glacial Maximum: Sensitivity studies on plausible causes. Journal of Geophysical Research, 2010, 115, .	3.3	15
113	A U.S. CLIVAR Project to Assess and Compare the Responses of Global Climate Models to Drought-Related SST Forcing Patterns: Overview and Results. Journal of Climate, 2009, 22, 5251-5272.	3.2	282
114	A Unified Modeling Approach to Climate System Prediction. Bulletin of the American Meteorological Society, 2009, 90, 1819-1832.	3.3	140
115	A new method for attributing climate variations over the Atlantic Hurricane Basin's main development region. Geophysical Research Letters, 2009, 36, .	4.0	14
116	Volcanic signals in oceans. Journal of Geophysical Research, 2009, 114, .	3.3	181
117	Simulated impact of altered Southern Hemisphere winds on the Atlantic Meridional Overturning Circulation. Geophysical Research Letters, 2008, 35, .	4.0	65
118	Freshwater Forcing: Will History Repeat Itself?. Science, 2008, 320, 316-317.	12.6	3
119	Decadal to centennial variability of the Atlantic from observations and models. Geophysical Monograph Series, 2007, , 131-148.	0.1	58
120	THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the American Meteorological Society, 2007, 88, 1383-1394.	3.3	2,484
121	Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature?. Geophysical Research Letters, 2007, 34, .	4.0	167
122	Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophysical Research Letters, 2007, 34, .	4.0	217
123	Observational Constraints on Past Attributable Warming and Predictions of Future Global Warming. Journal of Climate, 2006, 19, 3055-3069.	3.2	162
124	Have anthropogenic aerosols delayed a greenhouse gas-induced weakening of the North Atlantic thermohaline circulation?. Geophysical Research Letters, 2006, 33, .	4.0	80
125	Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. Journal of Geophysical Research, 2006, 111, .	3.3	199
126	Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters, 2006, 33, .	4.0	728

#	Article	IF	CITATIONS
127	Atlantic Climate Variability and Predictability: A CLIVAR Perspective. Journal of Climate, 2006, 19, 5100-5121.	3.2	99
128	GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation. Journal of Climate, 2006, 19, 675-697.	3.2	269
129	GFDL's CM2 Clobal Coupled Climate Models. Part IV: Idealized Climate Response. Journal of Climate, 2006, 19, 723-740.	3.2	110
130	Assessment of Twentieth-Century Regional Surface Temperature Trends Using the GFDL CM2 Coupled Models. Journal of Climate, 2006, 19, 1624-1651.	3.2	206
131	Quantifying anthropogenic influence on recent near-surface temperature change. Surveys in Geophysics, 2006, 27, 491-544.	4.6	50
132	GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics. Journal of Climate, 2006, 19, 643-674.	3.2	1,431
133	Simulation of Sahel drought in the 20th and 21st centuries. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17891-17896.	7.1	368
134	Oceanic forcing of the late 20th century Sahel drought. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	151
135	A modeling study of dynamic and thermodynamic mechanisms for summer drying in response to global warming. Geophysical Research Letters, 2005, 32, .	4.0	13
136	The impact of aerosols on simulated ocean temperature and heat content in the 20th century. Geophysical Research Letters, 2005, 32, .	4.0	67
137	Simulated Tropical Response to a Substantial Weakening of the Atlantic Thermohaline Circulation. Journal of Climate, 2005, 18, 1853-1860.	3.2	673
138	Century-Scale Change in Water Availability: CO2-Quadrupling Experiment. Climatic Change, 2004, 64, 59-76.	3.6	93
139	The ocean's response to North Atlantic Oscillation variability. Geophysical Monograph Series, 2003, , 113-145.	0.1	214
140	Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	96
141	A comparison of climate change simulations produced by two GFDL coupled climate models. Global and Planetary Change, 2003, 37, 81-102.	3.5	37
142	Climate Field Reconstruction under Stationary and Nonstationary Forcing. Journal of Climate, 2003, 16, 462-479.	3.2	70
143	Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dynamics, 2002, 19, 555-574.	3.8	119
144	Increasing risk of great floods in a changing climate. Nature, 2002, 415, 514-517.	27.8	1,419

#	Article	IF	CITATIONS
145	The Effect of Changes in Observational Coverage on the Association between Surface Temperature and the Arctic Oscillation. Journal of Climate, 2001, 14, 2481-2485.	3.2	7
146	Exploring natural and anthropogenic variation of climate. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 1-24.	2.7	16
147	Anthropogenic Warming of Earth's Climate System. Science, 2001, 292, 267-270.	12.6	445
148	Southern Hemisphere Atmospheric Circulation Response to Global Warming. Journal of Climate, 2001, 14, 2238-2249.	3.2	366
149	Implications of the Recent Trend in the Arctic/North Atlantic Oscillation for the North Atlantic Thermohaline Circulation. Journal of Climate, 2000, 13, 3721-3727.	3.2	122
150	Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 2000, 407, 617-620.	27.8	604
151	Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dynamics, 2000, 16, 661-676.	3.8	1,072
152	Multidecadal Thermohaline Circulation Variability Driven by Atmospheric Surface Flux Forcing. Journal of Climate, 2000, 13, 1481-1495.	3.2	269
153	Simulation of Early 20th Century Global Warming. Science, 2000, 287, 2246-2250.	12.6	256
154	Oceanic influence on the North Atlantic Oscillation and associated northern hemisphere climate variations: 1959-1993. Geophysical Research Letters, 2000, 27, 121-124.	4.0	149
155	Changes in Heat Index Associated with CO2-Induced Global Warming. Climatic Change, 1999, 43, 369-386.	3.6	67
156	The influence of transient surface fluxes on North Atlantic overturning in a coupled GCM Climate Change Experiment. Geophysical Research Letters, 1999, 26, 2749-2752.	4.0	83
157	Model assessment of regional surface temperature trends (1949-1997). Journal of Geophysical Research, 1999, 104, 30981-30996.	3.3	98
158	Detection and Attribution of Recent Climate Change: A Status Report. Bulletin of the American Meteorological Society, 1999, 80, 2631-2659.	3.3	145
159	Simulated interannual to decadal variability in the tropical and sub-tropical North Atlantic. Geophysical Research Letters, 1998, 25, 2825-2828.	4.0	16
160	Multidecadal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation. Geophysical Research Letters, 1997, 24, 257-260.	4.0	152
161	North Atlantic Interannual Variability in a Coupled Ocean–Atmosphere Model. Journal of Climate, 1996, 9, 2356-2375.	3.2	117
162	Decadal Variability of the Tropical Atlantic Ocean Surface Temperature in Shipboard Measurements and in a Global Ocean-Atmosphere Model. Journal of Climate, 1995, 8, 172-190.	3.2	108

#	Article	IF	CITATIONS
163	Climate variability and land-surface processes. Advances in Water Resources, 1993, 16, 3-20.	3.8	92
164	Interdecadal Variations of the Thermohaline Circulation in a Coupled Ocean-Atmosphere Model. Journal of Climate, 1993, 6, 1993-2011.	3.2	715
165	The temporal variability of soil wetness and its impact on climate. Climatic Change, 1990, 16, 185-192.	3.6	47
166	The Influence of Soil Wetness on Near-Surface Atmospheric Variability. Journal of Climate, 1989, 2, 1447-1462.	3.2	243
167	The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate. Journal of Climate, 1988, 1, 523-547.	3.2	380