
Danny Huylebroeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9508943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endothelial Zeb2 preserves the hepatic angioarchitecture and protects against liver fibrosis. Cardiovascular Research, 2022, 118, 1262-1275.	3.8	16
2	Comparative single-cell RNA-sequencing profiling of BMP4-treated primary glioma cultures reveals therapeutic markers. Neuro-Oncology, 2022, 24, 2133-2145.	1.2	8
3	Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Science Immunology, 2021, 6, .	11.9	65
4	ZEB2, the Mowat-Wilson Syndrome Transcription Factor: Confirmations, Novel Functions, and Continuing Surprises. Genes, 2021, 12, 1037.	2.4	24
5	Interplay between the EMT transcription factors ZEB1 and ZEB2 regulates hematopoietic stem and progenitor cell differentiation and hematopoietic lineage fidelity. PLoS Biology, 2021, 19, e3001394.	5.6	18
6	Low Input Targeted Chromatin Capture (Low-T2C). Methods in Molecular Biology, 2021, 2351, 165-179.	0.9	1
7	Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nature Communications, 2021, 12, 84.	12.8	48
8	Group 2 Innate Lymphoid Cells in Human Respiratory Disorders. Journal of Innate Immunity, 2020, 12, 47-62.	3.8	33
9	3D genome organization during lymphocyte development and activation. Briefings in Functional Genomics, 2020, 19, 71-82.	2.7	13
10	Zeb2 regulates the balance between retinal interneurons and Müller glia by inhibition of BMP–Smad signaling. Developmental Biology, 2020, 468, 80-92.	2.0	5
11	Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Science Immunology, 2020, 5, .	11.9	127
12	The Bone-Forming Properties of Periosteum-Derived Cells Differ Between Harvest Sites. Frontiers in Cell and Developmental Biology, 2020, 8, 554984.	3.7	19
13	The EMT Transcription Factor ZEB2 Promotes Proliferation of Primary and Metastatic Melanoma While Suppressing an Invasive, Mesenchymal-Like Phenotype. Cancer Research, 2020, 80, 2983-2995.	0.9	51
14	Targeted chromatin conformation analysis identifies novel distal neural enhancers of ZEB2 in pluripotent stem cell differentiation. Human Molecular Genetics, 2020, 29, 2535-2550.	2.9	10
15	Zeb2 Regulates Myogenic Differentiation in Pluripotent Stem Cells. International Journal of Molecular Sciences, 2020, 21, 2525.	4.1	7
16	Multifaceted actions of Zeb2 in postnatal neurogenesis from the ventricular-subventricular zone to the olfactory bulb. Development (Cambridge), 2020, 147, .	2.5	8
17	Exposure to lonizing Radiation Triggers Prolonged Changes in Circular RNA Abundance in the Embryonic Mouse Brain and Primary Neurons. Cells, 2019, 8, 778.	4.1	17
18	Integrative and perturbation based analysis of the transcriptional dynamics of TGFÎ ² /BMP system components in transition from embryonic stem cells to neural progenitors. Stem Cells, 2019, 38, 202-217.	3.2	6

#	Article	IF	CITATIONS
19	Differentiation of Mouse Enteric Nervous System Progenitor Cells Is Controlled by Endothelin 3 and Requires Regulation of Ednrb by SOX10 and ZEB2. Gastroenterology, 2017, 152, 1139-1150.e4.	1.3	28
20	The EMT transcription factor Zeb2 controls adult murine hematopoietic differentiation by regulating cytokine signaling. Blood, 2017, 129, 460-472.	1.4	52
21	Functional characterization of D630023F18Rik, a novel p53 target gene with a potential role in brain development and neuronal differentiation. Mechanisms of Development, 2017, 145, S121-S122.	1.7	1
22	MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC-derived progenitors. Nature Communications, 2017, 8, 1249.	12.8	24
23	Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells. Stem Cells, 2017, 35, 611-625.	3.2	41
24	Zeb2 is a negative regulator of midbrain dopaminergic axon growth and target innervation. Scientific Reports, 2017, 7, 8568.	3.3	24
25	p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification. PLoS Genetics, 2016, 12, e1006243.	3.5	26
26	Sip1/Zeb2 regulates the generation of the inner nuclear layer retinal cell lineages in mammals. Development (Cambridge), 2016, 143, 2829-41.	2.5	10
27	The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. Journal of Experimental Medicine, 2016, 213, 897-911.	8.5	125
28	miR-200 family controls late steps of postnatal forebrain neurogenesis via Zeb2 inhibition. Scientific Reports, 2016, 6, 35729.	3.3	31
29	Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nature Neuroscience, 2016, 19, 1050-1059.	14.8	123
30	Zeb2 recruits HDAC–NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination. Nature Neuroscience, 2016, 19, 1060-1072.	14.8	113
31	BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells. Stem Cell Reports, 2016, 6, 85-94.	4.8	27
32	The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 303-313.	4.1	159
33	Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts. Journal of Molecular Cell Biology, 2016, 8, 73-87.	3.3	19
34	ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nature Communications, 2015, 6, 5794.	12.8	75
35	Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. Journal of Experimental Medicine, 2015, 212, 2015-2025.	8.5	151
36	Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection. Journal of Experimental Medicine, 2015, 212, 2027-2039.	8.5	206

#	Article	IF	CITATIONS
37	Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. Journal of Cell Biology, 2015, 211, 2113OIA260.	5.2	0
38	Transcriptional repressor ZEB2 promotes terminal differentiation of CD8 ⁺ effector and memory T cell populations during infection. Journal of Cell Biology, 2015, 211, 2113OIA259.	5.2	0
39	NLS-tagging: an alternative strategy to tag nuclear proteins. Nucleic Acids Research, 2014, 42, e163-e163.	14.5	10
40	ZEB2-transgene expression in the epidermis compromises the integrity of the epidermal barrier through the repression of different tight junction proteins. Cellular and Molecular Life Sciences, 2014, 71, 3599-609.	5.4	20
41	Deletion of MgcRacGAP in the male germ cells impairs spermatogenesis and causes male sterility in the mouse. Developmental Biology, 2014, 386, 419-427.	2.0	14
42	Dlx1&2-Dependent Expression of Zfhx1b (Sip1, Zeb2) Regulates the Fate Switch between Cortical and Striatal Interneurons. Neuron, 2013, 77, 83-98.	8.1	140
43	Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1. Neuron, 2013, 77, 70-82.	8.1	112
44	Robustness in angiogenesis: Notch and BMP shaping waves. Trends in Genetics, 2013, 29, 140-149.	6.7	70
45	TDP2–Dependent Non-Homologous End-Joining Protects against Topoisomerase II–Induced DNA Breaks and Genome Instability in Cells and In Vivo. PLoS Genetics, 2013, 9, e1003226.	3.5	139
46	Aptamers and Their Potential to Selectively Target Aspects of EGF, Wnt/β-Catenin and TGFβ–Smad Family Signaling. International Journal of Molecular Sciences, 2013, 14, 6690-6719.	4.1	28
47	Four Amino Acids within a Tandem QxVx Repeat in a Predicted Extended α-Helix of the Smad-Binding Domain of Sip1 Are Necessary for Binding to Activated Smad Proteins. PLoS ONE, 2013, 8, e76733.	2.5	16
48	Onecut transcription factors act upstream of <i>lsl1</i> to regulate spinal motoneuron diversification. Development (Cambridge), 2012, 139, 3109-3119.	2.5	68
49	TDP2 promotes repair of topoisomerase I-mediated DNA damage in the absence of TDP1. Nucleic Acids Research, 2012, 40, 8371-8380.	14.5	86
50	The mammalian gene function resource: the international knockout mouse consortium. Mammalian Genome, 2012, 23, 580-586.	2.2	292
51	Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System. Neuron, 2012, 73, 713-728.	8.1	140
52	Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nature Genetics, 2012, 44, 445-449.	21.4	207
53	Antagonism of Nodal signaling by BMP/Smad5 prevents ectopic primitive streak formation in the mouse amnion. Development (Cambridge), 2012, 139, 3343-3354.	2.5	29
54	Stalk Cell Phenotype Depends on Integration of Notch and Smad1/5 Signaling Cascades. Developmental Cell, 2012, 22, 501-514.	7.0	198

#	Article	IF	CITATIONS
55	Bmp7 Regulates the Survival, Proliferation, and Neurogenic Properties of Neural Progenitor Cells during Corticogenesis in the Mouse. PLoS ONE, 2012, 7, e34088.	2.5	73
56	TGFβ1-Induced Baf60c Regulates both Smooth Muscle Cell Commitment and Quiescence. PLoS ONE, 2012, 7, e47629.	2.5	12
57	Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFβ/BMP signaling in vivo. Cytokine and Growth Factor Reviews, 2011, 22, 287-300.	7.2	95
58	The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization. Blood, 2011, 117, 5620-5630.	1.4	94
59	The transcription factor Smad-interacting protein 1 controls pain sensitivity via modulation of DRG neuron excitability. Pain, 2011, 152, 2384-2398.	4.2	18
60	Genetic interaction between Sox10 and Zfhx1b during enteric nervous system development. Developmental Biology, 2010, 341, 416-428.	2.0	49
61	Smad3 Is a Key Nonredundant Mediator of Transforming Growth Factor β Signaling in Nme Mouse Mammary Epithelial Cells. Molecular Cancer Research, 2009, 7, 1342-1353.	3.4	25
62	Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nature Neuroscience, 2009, 12, 1373-1380.	14.8	193
63	Transforming Growth Factor type Î ² and Smad family signaling in stem cell function. Cytokine and Growth Factor Reviews, 2009, 20, 449-458.	7.2	43
64	Essential validation of gene trap mouse ES cell lines: a test case with the gene Ttrap. International Journal of Developmental Biology, 2009, 53, 1045-1051.	0.6	4
65	A broken heart: A stretch too far. International Journal of Cardiology, 2008, 131, 33-44.	1.7	37
66	Conditional Deletion of <i>Smad1</i> and <i>Smad5</i> in Somatic Cells of Male and Female Gonads Leads to Metastatic Tumor Development in Mice. Molecular and Cellular Biology, 2008, 28, 248-257.	2.3	189
67	Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex. Human Molecular Genetics, 2008, 17, 1175-1183.	2.9	85
68	Smad-interacting protein-1 (Zfhx1b) acts upstream of Wnt signaling in the mouse hippocampus and controls its formation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12919-12924.	7.1	89
69	Ttrap is an essential modulator of Smad3-dependent Nodal signaling during zebrafish gastrulation and left-right axis determination. Development (Cambridge), 2007, 134, 4381-4393.	2.5	37
70	Neural crest-specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies reminiscent of Mowat–Wilson syndrome. Human Molecular Genetics, 2007, 16, 1423-1436.	2.9	80
71	Bone morphogenetic proteins go endothelial. Blood, 2007, 109, 1794-1795.	1.4	2
72	XSip1 neuralizing activity involves the co-repressor CtBP and occurs through BMP dependent and independent mechanisms. Developmental Biology, 2007, 306, 34-49.	2.0	52

#	Article	IF	CITATIONS
73	Inactivation of Smad5 in Endothelial Cells and Smooth Muscle Cells Demonstrates that Smad5 Is Required for Cardiac Homeostasis. American Journal of Pathology, 2007, 170, 1460-1472.	3.8	38
74	ÎEF1 and SIP1 are differentially expressed and have overlapping activities duringXenopusembryogenesis. Developmental Dynamics, 2006, 235, 1491-1500.	1.8	61
75	Complementary expression pattern ofZfhx1 genesSip1 andδEF1 in the mouse embryo and their genetic interaction revealed by compound mutants. Developmental Dynamics, 2006, 235, 1941-1952.	1.8	68
76	Sesn1 is a novel gene for left–right asymmetry and mediating nodal signaling. Human Molecular Genetics, 2006, 15, 3369-3377.	2.9	16
77	Smad5 determines murine amnion fate through the control of bone morphogenetic protein expression and signalling levels. Development (Cambridge), 2006, 133, 3399-3409.	2.5	24
78	Smicl is a novel Smad interacting protein and cleavage and polyadenylation specificity factor associated protein. Genes To Cells, 2005, 10, 897-906.	1.2	15
79	Involvement of SIP1 in positioning of somite boundaries in the mouse embryo. Developmental Dynamics, 2005, 234, 332-338.	1.8	57
80	Transforming Growth Factor-β-activated Kinase-1 (TAK1), a MAP3K, Interacts with Smad Proteins and Interferes with Osteogenesis in Murine Mesenchymal Progenitors. Journal of Biological Chemistry, 2005, 280, 27271-27283.	3.4	70
81	The novel Smad-interacting protein Smicl regulates Chordinexpression in the Xenopus embryo. Development (Cambridge), 2005, 132, 4575-4586.	2.5	14
82	Alk3/Bmpr1a Receptor Is Required for Development of the Atrioventricular Canal Into Valves and Annulus Fibrosus. Circulation Research, 2005, 97, 219-226.	4.5	130
83	Synaptopodin and 4 novel genes identified in primary sensory neurons. Molecular and Cellular Neurosciences, 2005, 30, 316-325.	2.2	3
84	Smads and chromatin modulation. Cytokine and Growth Factor Reviews, 2005, 16, 495-512.	7.2	24
85	Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nature Genetics, 2004, 36, 1213-1218.	21.4	410
86	Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochemical and Biophysical Research Communications, 2004, 322, 526-534.	2.1	50
87	Generation of a floxed allele ofSmad5 for cre-mediated conditional knockout in the mouse. Genesis, 2003, 37, 5-11.	1.6	41
88	New intracellular components of bone morphogenetic protein/Smad signaling cascades. FEBS Letters, 2003, 546, 133-139.	2.8	96
89	Slowed Conduction and Thin Myelination of Peripheral Nerves Associated with Mutant Rho Guanine-Nucleotide Exchange Factor 10. American Journal of Human Genetics, 2003, 73, 926-932.	6.2	107
90	Mice Lacking Zfhx1b, the Gene That Codes for Smad-Interacting Protein-1, Reveal a Role for Multiple Neural Crest Cell Defects in the Etiology of Hirschsprung Disease–Mental Retardation Syndrome. American Journal of Human Genetics, 2003, 72, 465-470.	6.2	272

#	Article	IF	CITATIONS
91	Organization of the mouse Zfhx1b gene encoding the two-handed zinc finger repressor Smad-interacting protein-1â~†. Genomics, 2003, 82, 460-469.	2.9	34
92	Alzheimer-associated C allele of the promoter polymorphism -22C>T causes a critical neuron-specific decrease of presenilin 1 expression. Human Molecular Genetics, 2003, 12, 869-877.	2.9	45
93	Heteromeric MAPPIT: a novel strategy to study modification-dependent protein-protein interactions in mammalian cells. Nucleic Acids Research, 2003, 31, 75e-75.	14.5	31
94	Interaction between Smad-interacting Protein-1 and the Corepressor C-terminal Binding Protein Is Dispensable for Transcriptional Repression of E-cadherin. Journal of Biological Chemistry, 2003, 278, 26135-26145.	3.4	96
95	Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2878-2883.	7.1	259
96	Dynamic regulation of Brachyury expression in the amphibian embryo by XSIP1. Mechanisms of Development, 2002, 111, 37-46.	1.7	40
97	Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genesis, 2002, 32, 82-84.	1.6	96
98	Complex Smad-Dependent Transcriptional Responses in Vertebrate Development and Human Disease. Critical Reviews in Eukaryotic Gene Expression, 2002, 12, 101-118.	0.9	8
99	Mice with a homozygous gene trap vector insertion in mgcRacGAP die during pre-implantation development. Mechanisms of Development, 2001, 102, 33-44.	1.7	37
100	Transforming growth factor β signalling in vitro and in vivo: activin ligand–receptor interaction, Smad5 in vasculogenesis, and repression of target genes by the Î'EF1/ZEB-related SIP1 in the vertebrate embryo. Molecular and Cellular Endocrinology, 2001, 180, 13-24.	3.2	22
101	The Two-Handed E Box Binding Zinc Finger Protein SIP1 Downregulates E-Cadherin and Induces Invasion. Molecular Cell, 2001, 7, 1267-1278.	9.7	1,264
102	Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB Journal, 2001, 15, 988-994.	0.5	126
103	Smad-interacting Protein 1 Is a Repressor of Liver/Bone/Kidney Alkaline Phosphatase Transcription in Bone Morphogenetic Protein-induced Osteogenic Differentiation of C2C12 Cells. Journal of Biological Chemistry, 2001, 276, 40001-40007.	3.4	30
104	Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB Journal, 2001, 15, 988-994.	0.5	43
105	Expression of the inhibitory Smad7 in early mouse development and upregulation during embryonic vasculogenesis. Developmental Dynamics, 2000, 218, 663-670.	1.8	20
106	Differentiation-Dependent Alternative Splicing and Expression of the Extracellular Matrix Protein 1 Gene in Human Keratinocytes. Journal of Investigative Dermatology, 2000, 114, 718-724.	0.7	71
107	The Bone Morphogenetic Protein 2 Signaling Mediator Smad1 Participates Predominantly in Osteogenic and not in Chondrogenic Differentiation in Mesenchymal Progenitors C3H10T½. Journal of Bone and Mineral Research, 2000, 15, 1889-1899.	2.8	49
108	TTRAP, a Novel Protein That Associates with CD40, Tumor Necrosis Factor (TNF) Receptor-75 and TNF Receptor-associated Factors (TRAFs), and That Inhibits Nuclear Factor-κB Activation. Journal of Biological Chemistry, 2000, 275, 18586-18593.	3.4	120

#	Article	IF	CITATIONS
109	Smad5 Is Essential for Left–Right Asymmetry in Mice. Developmental Biology, 2000, 219, 71-78.	2.0	138
110	XSIP1, a Xenopus zinc finger/homeodomain encoding gene highly expressed during early neural development. Mechanisms of Development, 2000, 94, 189-193.	1.7	46
111	Expression of the follistatin/EGF-containing transmembrane protein M7365 (tomoregulin-1) during mouse development. Mechanisms of Development, 2000, 97, 167-171.	1.7	17
112	SIP1, a Novel Zinc Finger/Homeodomain Repressor, Interacts with Smad Proteins and Binds to 5′-CACCT Sequences in Candidate Target Genes. Journal of Biological Chemistry, 1999, 274, 20489-20498.	3.4	445
113	Identification of Two Amino Acids in Activin A That Are Important for Biological Activity and Binding to the Activin Type II Receptors. Journal of Biological Chemistry, 1999, 274, 9821-9827.	3.4	40
114	Remarkable versatility of Smad proteins in the nucleus of transforming growth factor-β activated cells. Cytokine and Growth Factor Reviews, 1999, 10, 187-199.	7.2	31
115	Alzheimer's Disease Associated Presenilin 1 Interacts with HC5 and ZETA, Subunits of the Catalytic 20S Proteasome. Neurobiology of Disease, 1999, 6, 376-391.	4.4	24
116	The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activation. Mechanisms of Development, 1997, 61, 127-140.	1.7	66
117	Active complex formation of type I and type II activin and TGFÎ ² receptors in vivo as studied by overexpression in zebrafish embryos. Mechanisms of Development, 1996, 54, 225-236.	1.7	8
118	Follistatins neutralize activin bioactivity by inhibition of activin binding to its type II receptors. Molecular and Cellular Endocrinology, 1996, 116, 105-114.	3.2	185
119	Truncated Activin Type II Receptors Inhibit Activin Bioactivity by the Formation of Heteromeric Complexes with Activin Type I Receptors. Experimental Cell Research, 1996, 224, 323-334.	2.6	23
120	Expression of type I and type IB receptors for activin in midgestation mouse embryos suggests distinct functions in organogenesis. Mechanisms of Development, 1995, 52, 109-123.	1.7	111
121	Expression and Processing of the Activin-A/Erythroid Differentiation Factor Precursor: A Member of the Transforming Growth Factor-β Superfamily. Molecular Endocrinology, 1990, 4, 1153-1165.	3.7	36
122	High-level transient expression of influenza virus proteins from a series of SV40 late and early replacement vectors. Gene, 1988, 66, 163-181.	2.2	51
123	Foreign transmembrane peptides replacing the internal signal sequence of transferrin receptor allow its translocation and membrane binding. Cell, 1987, 48, 147-155.	28.9	84
124	Complete nucleotide sequence of the influenza B/Singapore/222/79 virus hemagglutinin gene and comparison with the B/Lee/40 hemagglutinin. Nucleic Acids Research, 1983, 11, 4703-4712.	14.5	55
125	Complete nucleotide sequence of a human influenza neuraminidase gene of subtype N2 (A/Victoria/3/75). Journal of Molecular Biology, 1982, 161, 1-11.	4.2	47
126	Complete structure of A/duck/Ukraine/63 influenza hemagglutinin gene: Animal virus as progenitor of human H3 Hong Kong 1968 influenza hemagglutinin. Cell, 1981, 25, 315-323.	28.9	159

#	Article	IF	CITATIONS
127	Complete Nucleotide Sequence of the Nucleoprotein Gene from the Human Influenza Strain A/PR/8/34 (HON1). FEBS Journal, 1981, 116, 347-353.	0.2	43
128	DRIFT AND SHIFT OF INFLUENZA VIRUS STUDIED AT THE GENOMIC LEVEL. , 1981, , 17-27.		0
129	Antigenic drift between the haemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature, 1980, 286, 771-776.	27.8	263