Xu Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9508627/publications.pdf

Version: 2024-02-01

30	5,230	18	29
papers	citations	h-index	g-index
31	31	31	7711 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Gain-of-function genetic screening identifies the antiviral function of TMEM120A via STING activation. Nature Communications, 2022, 13 , 105 .	12.8	17
2	Loss of m6A Methyltransferase METTL5 Promotes Cardiac Hypertrophy Through Epitranscriptomic Control of SUZ12 Expression. Frontiers in Cardiovascular Medicine, 2022, 9, 852775.	2.4	10
3	The curious case of TMEM120A: Mechanosensor, fat regulator, or antiviral defender?. BioEssays, 2022, 44, e2200045.	2.5	3
4	Current Strategies of Antiviral Drug Discovery for COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 671263.	3.5	75
5	Virtual memory T cells orchestrate extralymphoid responses conducive to resident memory. Science Immunology, 2021, 6, eabg9433.	11.9	12
6	Orthogonal genome-wide screens of bat cells identify MTHFD1 as a target of broad antiviral therapy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
7	Profiling CD8+ TÂcell epitopes of COVID-19 convalescents reveals reduced cellular immune responses to SARS-CoV-2 variants. Cell Reports, 2021, 36, 109708.	6.4	42
8	Genome-wide evolution analysis reveals low CpG contents of fast-evolving genes and identifies antiviral microRNAs. Journal of Genetics and Genomics, 2020, 47, 49-60.	3.9	4
9	PSGL-1 inhibits HIV-1 infection by restricting actin dynamics and sequestering HIV envelope proteins. Cell Discovery, 2020, 6, 53.	6.7	15
10	Discovery of (1 <i>H</i> -Pyrazolo[3,4- <i>c</i>)]pyridin-5-yl)sulfonamide Analogues as Hepatitis B Virus Capsid Assembly Modulators by Conformation Constraint. Journal of Medicinal Chemistry, 2020, 63, 6066-6089.	6.4	19
11	Viral Manipulations of the Cullin-RING Ubiquitin Ligases. Advances in Experimental Medicine and Biology, 2020, 1217, 99-110.	1.6	13
12	Structure of the African swine fever virus major capsid protein p72. Cell Research, 2019, 29, 953-955.	12.0	70
13	Proteomic profiling of HIV-1 infection of human CD4+ T cells identifies PSGL-1 as an HIV restriction factor. Nature Microbiology, 2019, 4, 813-825.	13.3	48
14	Integrative Analysis of Zika Virus Genome RNA Structure Reveals Critical Determinants of Viral Infectivity. Cell Host and Microbe, 2018, 24, 875-886.e5.	11.0	89
15	A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Research, 2017, 27, 440-443.	12.0	255
16	Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Nature Genetics, 2016, 48, 1508-1516.	21.4	101
17	An Orthogonal Array Optimization of Lipid-like Nanoparticles for mRNA Delivery in Vivo. Nano Letters, 2015, 15, 8099-8107.	9.1	182
18	When noise makes music: HIV reactivation with transcriptional noise enhancers. Genome Medicine, 2014, 6, 55.	8.2	1

#	Article	IF	CITATIONS
19	Tiling genomes of pathogenic viruses identifies potent antiviral shRNAs and reveals a role for secondary structure in shRNA efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 869-874.	7.1	99
20	Systematic identification of synergistic drug pairs targeting HIV. Nature Biotechnology, 2012, 30, 1125-1130.	17.5	108
21	A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nature Chemical Biology, 2012, 8, 477-485.	8.0	490
22	Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature, 2010, 468, 400-405.	27.8	1,192
23	A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18475-18480.	7.1	471
24	Auxin PerceptionStructural Insights. Cold Spring Harbor Perspectives in Biology, 2010, 2, a005546-a005546.	5.5	148
25	Hormone signaling through protein destruction: a lesson from plants. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E223-E227.	3.5	18
26	Small-molecule agonists and antagonists of F-box protein–substrate interactions in auxin perception and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5632-5637.	7.1	188
27	Disease-causing Mutation in GPR54 Reveals the Importance of the Second Intracellular Loop for Class A G-protein-coupled Receptor Function. Journal of Biological Chemistry, 2008, 283, 31068-31078.	3.4	63
28	Unraveling the molecular mechanism by which the L148S mutation of GPR54 causes idiopathic hypogonadotrophic hypogonadism FASEB Journal, 2008, 22, 729.1.	0.5	0
29	Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 2007, 446, 640-645.	27.8	1,367
30	Minimization and Optimization of Designed \hat{l}^2 -Hairpin Folds. Journal of the American Chemical Society, 2006, 128, 6101-6110.	13.7	111