
Dennis Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9507252/publications.pdf Version: 2024-02-01

DENNIS PALI

#	Article	IF	CITATIONS
1	Targeted Osmotic Lysis: A Novel Approach to Targeted Cancer Therapies. Biomedicines, 2022, 10, 838.	3.2	3
2	A Standardized, Scalable Method to Quantify in Vitro Invasiveness. FASEB Journal, 2022, 36, .	0.5	0
3	Targeted Osmotic Lysis of Advanced Carcinoma in Companion Animals. FASEB Journal, 2022, 36, .	0.5	0
4	Dividing Cells are Most Susceptible to Targeted Osmotic Lysis Cancer Therapy. FASEB Journal, 2022, 36, .	0.5	0
5	Relative Expression of Voltageâ€Gated Sodium Channels in Cancerous and Noncancerous Cells during the Cell Cycle. FASEB Journal, 2021, 35, .	0.5	Ο
6	Targeted Osmotic Lysis Emergency Use Treatment of a Patient with Aggressive, Lateâ€stage Cervical Cancer. FASEB Journal, 2021, 35, .	0.5	1
7	Emergency Use of Targeted Osmotic Lysis for the Treatment of a Patient with Aggressive Late-Stage Squamous Cell Carcinoma of the Cervix. Current Oncology, 2021, 28, 2115-2122.	2.2	3
8	Targeted Osmotic Lysis of Highly Invasive Breast Carcinomas Using Pulsed Magnetic Field Stimulation of Voltage-Gated Sodium Channels and Pharmacological Blockade of Sodium Pumps. Cancers, 2020, 12, 1420.	3.7	5
9	A novel pipeline of 2-(benzenesulfonamide)-N-(4-hydroxyphenyl) acetamide analgesics that lack hepatotoxicity and retain antipyresis. European Journal of Medicinal Chemistry, 2020, 202, 112600.	5.5	4
10	Targeted Osmotic Lysis of H28 Mesothelioma Cells. FASEB Journal, 2019, 33, 675.9.	0.5	0
11	A Comprehensive Proteomic Analysis of Metastatic Cancer Progression in a Murine Model of Tumorigenesis Using Orbitrap Tandem Mass Spectrometry. FASEB Journal, 2019, 33, 509.7.	0.5	Ο
12	Selective lysis of breast carcinomas by simultaneous stimulation of sodium channels and blockade of sodium pumps. Oncotarget, 2018, 9, 15606-15615.	1.8	15
13	Targeted Osmotic Lysis of Highly Invasive Carcinomas Using a Pulsed Magnetic Field and Pharmacological Blockade of Voltageâ€Gated Sodium Channels. FASEB Journal, 2018, 32, 565.3.	0.5	0
14	Critical appraisal of extended-release hydrocodone for chronic pain: patient considerations. Therapeutics and Clinical Risk Management, 2015, 11, 1635.	2.0	2
15	Oxidation-sensitive nociception involved in endometriosis-associated pain. Pain, 2015, 156, 528-539.	4.2	32
16	Hydrocodone extended-release: Pharmacodynamics, pharmacokinetics and behavioral pharmacology of a controversy. Pharmacological Research, 2015, 91, 99-103.	7.1	12
17	Ranolazine Attenuates Mechanical Allodynia Associated with Demyelination Injury. Pain Medicine, 2014, 15, 1771-1780.	1.9	15
18	Regulation and pharmacological blockade of sodium-potassium ATPase: A novel pathway to neuropathy. Journal of the Neurological Sciences, 2014, 340, 139-143.	0.6	15

DENNIS PAUL

#	Article	IF	CITATIONS
19	PDZK1 Is a Novel Factor in Breast Cancer That Is Indirectly Regulated by Estrogen through IGF-1R and Promotes Estrogen-Mediated Growth. Molecular Medicine, 2013, 19, 253-262.	4.4	90
20	A Curriculum for Teaching Scientific Presentation Skills to Graduate Students. FASEB Journal, 2012, 26, 719.12.	0.5	0
21	Measurement of CFA-Induced Hyperalgesia and Morphine-Induced Analgesia in Rats: Dorsal vs Plantar Mechanical Stimulation of the Hindpaw. Pain Medicine, 2011, 12, 451-458.	1.9	12
22	Potentiation of Delta Opioid Receptor Inhibition of Adenyly Cyclase Activity By 5â€HT3 Receptor Stimulation in Intact NG108â€15 Cells. FASEB Journal, 2011, 25, .	0.5	0
23	Ranolazine Attenuation of CFA-induced Mechanical Hyperalgesia. Pain Medicine, 2010, 11, 119-126.	1.9	15
24	Insulin Is Essential for the Recovery from Allodynia Induced by Complete Freund's Adjuvant. Pain Medicine, 2010, 11, 1401-1410.	1.9	6
25	Ranolazine attenuates behavioral signs of neuropathic pain. Behavioural Pharmacology, 2009, 20, 755-758.	1.7	31
26	Medications of abuse in pain management. Current Opinion in Anaesthesiology, 2007, 20, 319-324.	2.0	12
27	Drug-Receptor Interactions. , 2007, , 1-3.		1
28	Quantitative Parameters of Drug Action. , 2007, , 1-6.		0
29	Classical Models for Drug Receptor Interactions. , 2007, , 1-4.		0
30	Synthesis and in vivo evaluation of non-hepatotoxic acetaminophen analogs. Bioorganic and Medicinal Chemistry, 2007, 15, 2206-2215.	3.0	30
31	Ibuprofen blocks changes in nav 1.7 and 1.8 sodium channels associated with complete freund's adjuvant–induced inflammation in rat. Journal of Pain, 2004, 5, 270-280.	1.4	116
32	Synthesis and Biological Evaluation at Nicotinic Acetylcholine Receptors ofN-Arylalkyl- andN-Aryl-7-Azabicyclo[2.2.1]heptanes. Journal of Medicinal Chemistry, 2002, 45, 3041-3047.	6.4	19
33	Cross-tolerance between analgesia produced by xylazine and selective opioid receptor subtype treatments. European Journal of Pharmacology, 2000, 389, 181-185.	3.5	13
34	A possible role for nerve growth factor in the augmentation of sodium channels in models of chronic pain. Brain Research, 2000, 854, 19-29.	2.2	145
35	The effects of postmortem delay on mu, delta and kappa opioid receptor subtypes in rat brain and guinea pig cerebellum evaluated by radioligand receptor binding. Life Sciences, 1997, 61, 1993-1998.	4.3	11
36	Intrathecal Tyr-W-MIF-1 produces potent, naloxone-reversible analgesia modulated by α2-adrenoceptors. European Journal of Pharmacology, 1996, 298, 235-239.	3.5	17

DENNIS PAUL

#	Article	IF	CITATIONS
37	Analgesic effects of Tyr-W-MIF-1: a mixed μ2-opioid receptor receptor antagonist. European Journal of Pharmacology, 1996, 316, 33-38.	3.5	18
38	Opioids and the Control of Pain. , 1996, , 167-192.		1
39	Effects of κ-opioid receptor agonists on stimulated phosphoinositide hydrolysis in rat kidney. European Journal of Pharmacology, 1995, 289, 411-417.	2.6	8
40	Differential cross-tolerance between analgesia produced by $\hat{I}\pm 2$ -adrenoceptor agonists and receptor subtype selective opioid treatments. European Journal of Pharmacology, 1995, 272, 111-114.	3.5	17
41	Potentiation of intrathecal DAMGO antinociception, but not gastrointestinal transit inhibition, by 5-hydroxytryptamine and norepinephrine uptake blockade. Life Sciences, 1994, 56, PL83-PL87.	4.3	3
42	Analgesic potency of TRIMU-5: A mixed μ2 opioid receptor agonists/μ1 opioid receptor antagonist. European Journal of Pharmacology, 1992, 216, 249-255.	3.5	7
43	Potentiation of opioid analgesia by the antidepressant nefazodone. European Journal of Pharmacology, 1992, 211, 375-381.	3.5	64
44	Evidence of hyperglycemic hyperalgesia by quinpirole. Pharmacology Biochemistry and Behavior, 1992, 41, 65-67.	2.9	7
45	Comparison of naloxonazine and β-funaltrexamine antagonism of μ1 and μ2 opioid actions. Life Sciences, 1991, 48, 2005-2011.	4.3	52
46	Gender effects and central opioid analgesia. Pain, 1991, 45, 87-94.	4.2	167
47	Synergistic analgesic interactions between the periaqueductal gray and the locus coeruleus. Brain Research, 1991, 558, 224-230.	2.2	31
48	Genetic influences in opioid analgesic sensitivity in mice. Brain Research, 1991, 566, 295-298.	2.2	77
49	Associative factors in tolerance to analgesia produced by electrical stimulation in the brainstem Behavioral Neuroscience, 1990, 104, 207-216.	1.2	2
50	Pirenperone does not attenuate morphine analgesia in spinal rats. Psychopharmacology, 1990, 100, 98-101.	3.1	3
51	Blockade of morphine analgesia by both pertussis and cholera toxins in the periaqueductal gray and locus coeruleus. Brain Research, 1990, 529, 324-328.	2.2	33
52	Different μ receptor subtypes mediate spinal and supraspinal analgesia in mice. European Journal of Pharmacology, 1989, 168, 307-314.	3.5	125
53	Reduction in opioid and non-opioid forms of swim analgesia by 5-HT2 receptor antagonists. Brain Research, 1989, 500, 231-240.	2.2	22
54	Chronic opioid antagonist treatment increases μ and δreceptor mediated spinal cord opioid analgesia. Brain Research, 1989, 485, 176-178.	2.2	25

DENNIS PAUL

#	Article	IF	CITATIONS
55	Differential development of acute tolerance to analgesia, respiratory depression, gastrointestinal transit and hormone release in a morphine infusion model. Life Sciences, 1989, 45, 1627-1636.	4.3	114
56	Attenuation of morphine analgesia by the S2 antagonists, pirenperone and ketanserin. Pharmacology Biochemistry and Behavior, 1988, 31, 641-647.	2.9	24
57	Differential blockade by naloxonazine of two μ opiate actions: Analgesia and inhibition of gastrointestinal transit. European Journal of Pharmacology, 1988, 149, 403-404.	3.5	54
58	Selective effects of pirenperone on analgesia produced by morphine or electrical stimulation at sites in the nucleus raphe magnus and periaqueductal gray. Psychopharmacology, 1986, 88, 172-176.	3.1	27