
Javier Benavente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9506506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Avian reovirus: Structure and biology. Virus Research, 2007, 123, 105-119.	2.2	196
2	The Avian Reovirus Genome Segment S1 Is a Functionally Tricistronic Gene That Expresses One Structural and Two Nonstructural Proteins in Infected Cells. Virology, 2001, 290, 181-191.	2.4	105
3	Protein architecture of avian reovirus S1133 and identification of the cell attachment protein. Journal of Virology, 1997, 71, 59-64.	3.4	96
4	Avian reovirus nonstructural protein μNS forms viroplasm-like inclusions and recruits protein σNS to these structures. Virology, 2004, 319, 94-106.	2.4	80
5	Avian Reovirus Morphogenesis Occurs Within Viral Factories and Begins with the Selective Recruitment of ÏfNS and λA to μNS Inclusions. Journal of Molecular Biology, 2004, 341, 361-374.	4.2	60
6	Modification of Late Membrane Permeability in Avian Reovirus-infected Cells. Journal of Biological Chemistry, 2002, 277, 17789-17796.	3.4	59
7	Evidence that avian reovirus ÏfA protein is an inhibitor of the double-stranded RNA-dependent protein kinase. Journal of General Virology, 2003, 84, 1629-1639.	2.9	59
8	Possible Involvement of the Double-Stranded RNA-Binding Core Protein Ï,A in the Resistance of Avian Reovirus to Interferon. Journal of Virology, 2000, 74, 1124-1131.	3.4	58
9	Avian Reoviruses Cause Apoptosis in Cultured Cells: Viral Uncoating, but Not Viral Gene Expression, Is Required for Apoptosis Induction. Journal of Virology, 2002, 76, 7932-7941.	3.4	58
10	Structure of the Carboxy-terminal Receptor-binding Domain of Avian Reovirus Fibre SigmaC. Journal of Molecular Biology, 2005, 354, 137-149.	4.2	56
11	The Second Open Reading Frame of the Avian Reovirus S1 Gene Encodes a Transcription-Dependent and CRM1-Independent Nucleocytoplasmic Shuttling Protein. Journal of Virology, 2005, 79, 2141-2150.	3.4	51
12	Intracellular posttranslational modifications of S1133 avian reovirus proteins. Journal of Virology, 1996, 70, 2974-2981.	3.4	48
13	Endogenous Enzymatic Activities of the Avian Reovirus S1133: Identification of the Viral Capping Enzyme. Virology, 1995, 206, 1017-1026.	2.4	40
14	Avian Reovirus μNS Protein Forms Homo-Oligomeric Inclusions in a Microtubule-Independent Fashion, Which Involves Specific Regions of Its C-Terminal Domain. Journal of Virology, 2010, 84, 4289-4301.	3.4	40
15	Effect of interferon on integrity of vaccinia virus and ribosomal RNA in infected cells. Virology, 1984, 134, 40-51.	2.4	37
16	Cloning, Expression, and Characterization of Avian Reovirus Guanylyltransferase. Virology, 2002, 296, 288-299.	2.4	36
17	A new double-stranded RNA mycovirus fromBotrytis cinerea. FEMS Microbiology Letters, 1999, 175, 95-99.	1.8	35
18	Subunit composition and conformational stability of the oligomeric form of the avian reovirus	2.9	34

⁸ cell-attachment protein ÏfC. Journal of General Virology, 2002, 83, 131-139.

JAVIER BENAVENTE

#	Article	IF	CITATIONS
19	Avian Reovirus SigmaA Localizes to the Nucleolus and Enters the Nucleus by a Nonclassical Energy- and Carrier-Independent Pathway. Journal of Virology, 2009, 83, 10163-10175.	3.4	32
20	Oligomerization and Cell-Binding Properties of the Avian Reovirus Cell-Attachment Protein Ï,C. Virology, 2000, 274, 367-377.	2.4	30
21	VP2, VP7, and NS1 proteins of bluetongue virus targeted in avian reovirus muNS-Mi microspheres elicit a protective immune response in IFNAR(â°'/â^') mice. Antiviral Research, 2014, 110, 42-51.	4.1	27
22	Optimal conditions for the growth, purification and storage of the avian reovirus S1133. Journal of Virological Methods, 2000, 85, 43-54.	2.1	24
23	Characterization of the nucleic acid-binding activity of the avian reovirus non-structural protein ÏfNS. Journal of General Virology, 2005, 86, 1159-1169.	2.9	24
24	Crystal Structure of the Avian Reovirus Inner Capsid Protein σA. Journal of Virology, 2008, 82, 11208-11216.	3.4	20
25	A Versatile Molecular Tagging Method for Targeting Proteins to Avian Reovirus muNS Inclusions. Use in Protein Immobilization and Purification. PLoS ONE, 2010, 5, e13961.	2.5	20
26	Avian reovirus-triggered apoptosis enhances both virus spread and the processing of the viral nonstructural muNS protein. Virology, 2014, 462-463, 49-59.	2.4	18
27	Microspheres-prime/rMVA-boost vaccination enhances humoral and cellular immune response in IFNAR(â~')â~') mice conferring protection against serotypes 1 and 4 of bluetongue virus. Antiviral Research, 2017, 142, 55-62.	4.1	13
28	Avian and mammalian reoviruses use different molecular mechanisms to synthesize their μNS isoforms. Journal of General Virology, 2011, 92, 2566-2574.	2.9	12
29	Interferon induction by avian reovirus. Virology, 2016, 487, 104-111.	2.4	11
30	Cross-protective immune responses against African horse sickness virus after vaccination with protein NS1 delivered by avian reovirus muNS microspheres and modified vaccinia virus Ankara. Vaccine, 2020, 38, 882-889.	3.8	11
31	Avian reovirus S1133 can replicate in mouse L cells: effect of pH and cell attachment status on viral infection. Journal of Virology, 1991, 65, 5499-5505.	3.4	11
32	IC-Tagging and Protein Relocation to ARV muNS Inclusions: A Method to Study Protein-Protein Interactions in the Cytoplasm or Nucleus of Living Cells. PLoS ONE, 2010, 5, e13785.	2.5	10
33	IC-tagged proteins are able to interact with each other and perform complex reactions when integrated into muNS-derived inclusions. Journal of Biotechnology, 2011, 155, 284-286.	3.8	7
34	Crystallization of the C-terminal globular domain of avian reovirus fibre. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 651-654.	0.7	6
35	Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin. Virology, 2012, 432, 495-504.	2.4	5
36	The stimulatory effect of actinomycin D on avian reovirus replication in L cells suggests that translational competition dictates the fate of the infection. Journal of Virology, 1991, 65, 5506-5512.	3.4	4

JAVIER BENAVENTE

#	Article	IF	CITATIONS
37	Crystallization of the avian reovirus double-stranded RNA-binding and core protein ÏfA. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 426-429.	0.7	3
38	IC-Tagging methodology applied to the expression of viral glycoproteins and the difficult-to-express membrane-bound IGRP autoantigen. Scientific Reports, 2018, 8, 16286.	3.3	3
39	Using IC-Tagging Methodology for Production and Purification of Epitope-Loaded Protein Microspheres for Vaccination. Methods in Molecular Biology, 2016, 1349, 25-34.	0.9	2
40	Response of Three Different Viruses to Interferon Priming and Dithiothreitol Treatment of Avian Cells. Journal of Virology, 2016, 90, 8328-8340.	3.4	1
41	Permeabilization of Mammalian Cells to Proteins: Poliovirus 2Aproas a Probe to Analyze Entry of Proteins into Cells. Experimental Cell Research, 1997, 232, 186-190.	2.6	0