Mitchel J Doktycz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9506407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learningâ€based prediction of enzyme substrate scope: Application to bacterial nitrilases. Proteins: Structure, Function and Bioinformatics, 2021, 89, 336-347.	2.6	30
2	Cultivating the Bacterial Microbiota of <i>Populus</i> Roots. MSystems, 2021, 6, e0130620.	3.8	17
3	A lysate proteome engineering strategy for enhancing cell-free metabolite production. Metabolic Engineering Communications, 2021, 12, e00162.	3.6	11
4	Advances and perspectives in discovery and functional analysis of small secreted proteins in plants. Horticulture Research, 2021, 8, 130.	6.3	20
5	Liquid Chromatography Coupled to Refractive Index or Mass Spectrometric Detection for Metabolite Profiling in Lysate-based Cell-free Systems. Journal of Visualized Experiments, 2021, , .	0.3	0
6	Plant–Microbe Interactions: From Genes to Ecosystems Using <i>Populus</i> as a Model System. Phytobiomes Journal, 2021, 5, 29-38.	2.7	31
7	Formation, characterization and modeling of emergent synthetic microbial communities. Computational and Structural Biotechnology Journal, 2021, 19, 1917-1927.	4.1	12
8	Metaproteomics reveals insights into microbial structure, interactions, and dynamic regulation in defined communities as they respond to environmental disturbance. BMC Microbiology, 2021, 21, 308.	3.3	11
9	Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude <i>E.Âcoli</i> Cell-Free Systems. ACS Synthetic Biology, 2020, 9, 2986-2997.	3.8	4
10	A carotenoid-deficient mutant of the plant-associated microbe Pantoea sp. YR343 displays an altered membrane proteome. Scientific Reports, 2020, 10, 14985.	3.3	6
11	Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network. PLoS ONE, 2019, 14, e0218316.	2.5	55
12	Label-free time- and space-resolved exometabolite sampling of growing plant roots through nanoporous interfaces. Scientific Reports, 2019, 9, 10272.	3.3	12
13	Microfluidics and Metabolomics Reveal Symbiotic Bacterial–Fungal Interactions Between Mortierella elongata and Burkholderia Include Metabolite Exchange. Frontiers in Microbiology, 2019, 10, 2163.	3.5	37
14	Computationally Guided Discovery and Experimental Validation of Indole-3-acetic Acid Synthesis Pathways. ACS Chemical Biology, 2019, 14, 2867-2875.	3.4	8
15	Microfluidics-based separation of actinium-225 from radium-225 for medical applications. Separation Science and Technology, 2019, 54, 1994-2002.	2.5	0
16	Increasing access to microfluidics for studying fungi and other branched biological structures. Fungal Biology and Biotechnology, 2019, 6, 1.	5.1	17
17	Loss of carotenoids from membranes of Pantoea sp. YR343 results in altered lipid composition and changes in membrane biophysical properties. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1338-1345.	2.6	14

18 Microbial Cell Imaging Using Atomic Force Microscopy. , 2019, , 45-70.

2

#	Article	IF	CITATIONS
19	Characterization of Indole-3-acetic Acid Biosynthesis and the Effects of This Phytohormone on the Proteome of the Plant-Associated Microbe <i>Pantoea</i> sp. YR343. Journal of Proteome Research, 2018, 17, 1361-1374.	3.7	28
20	Nano-Enabled Approaches to Chemical Imaging in Biosystems. Annual Review of Analytical Chemistry, 2018, 11, 351-373.	5.4	1
21	Abiotic Stresses Shift Belowground <i>Populus</i> -Associated Bacteria Toward a Core Stress Microbiome. MSystems, 2018, 3, .	3.8	89
22	Quantifying the Spatiotemporal Dynamics of Plant Root Colonization by Beneficial Bacteria in a Microfluidic Habitat. Advanced Biology, 2018, 2, 1800048.	3.0	31
23	Exploration of the Biosynthetic Potential of the <i>Populus</i> Microbiome. MSystems, 2018, 3, .	3.8	34
24	Elucidating the potential of crude cell extracts for producing pyruvate from glucose. Synthetic Biology, 2018, 3, ysy006.	2.2	20
25	Elucidating Duramycin's Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope. Frontiers in Microbiology, 2018, 9, 219.	3.5	14
26	<i>In Vivo</i> Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale. Journal of Physical Chemistry Letters, 2017, 8, 1899-1904.	4.6	29
27	Proteomics-Based Tools for Evaluation of Cell-Free Protein Synthesis. Analytical Chemistry, 2017, 89, 11443-11451.	6.5	21
28	Imaging the Root Hair Morphology of Arabidopsis Seedlings in a Two-layer Microfluidic Platform. Journal of Visualized Experiments, 2017, , .	0.3	8
29	Automated Interpretation and Extraction of Topographic Information from Time of Flight Secondary Ion Mass Spectrometry Data. Scientific Reports, 2017, 7, 17099.	3.3	21
30	β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity. Infection and Immunity, 2017, 85, .	2.2	44
31	Cellular Interfacing with Arrays of Vertically Aligned Carbon Nanofibers and Nanofiber-Templated Materials. , 2017, , 177-202.		0
32	A Carotenoid-Deficient Mutant in Pantoea sp. YR343, a Bacteria Isolated from the Rhizosphere of Populus deltoides, Is Defective in Root Colonization. Frontiers in Microbiology, 2016, 7, 491.	3.5	48
33	Two Poplar-Associated Bacterial Isolates Induce Additive Favorable Responses in a Constructed Plant-Microbiome System. Frontiers in Plant Science, 2016, 7, 497.	3.6	113
34	Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis. Applied and Environmental Microbiology, 2016, 82, 5698-5708.	3.1	53
35	While-you-wait proteins? Producing biomolecules at the point of need. Expert Review of Proteomics, 2016, 13, 707-709.	3.0	7
36	Toward Microfluidic Reactors for Cellâ€Free Protein Synthesis at the Pointâ€ofâ€Care. Small, 2016, 12, 810-817.	10.0	60

#	Article	IF	CITATIONS
37	Microreactors: Toward Microfluidic Reactors for Cellâ€Free Protein Synthesis at the Pointâ€ofâ€Care (Small 6/2016). Small, 2016, 12, 690-690.	10.0	3
38	Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis. Applied and Environmental Microbiology, 2016, 82, 375-383.	3.1	70
39	Stochastic Assembly of Bacteria in Microwell Arrays Reveals the Importance of Confinement in Community Development. PLoS ONE, 2016, 11, e0155080.	2.5	42
40	Integration of Nanostructures Within Microfluidic Devices. , 2016, , 1671-1678.		0
41	Biofilms in Microfluidic Devices. , 2016, , 251-257.		Ο
42	Nanofluidic interfaces in microfluidic networks. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 06FM01.	1.2	2
43	Microstencils to generate defined, multi-species patterns of bacteria. Biomicrofluidics, 2015, 9, 064103.	2.4	8
44	Characterization of extended channel bioreactors for continuous-flow protein production. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	1.2	11
45	Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment. Frontiers in Microbiology, 2015, 6, 1118.	3.5	60
46	Fabrication of nanoporous membranes for tuning microbial interactions and biochemical reactions. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 06FM03.	1.2	7
47	Modular microfluidics for point-of-care protein purifications. Lab on A Chip, 2015, 15, 1799-1811.	6.0	58
48	New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies. Nanoscale, 2015, 7, 6545-6555.	5.6	22
49	Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria. , 2015, 9550, .		1
50	Evaluation and validation of de novo and hybrid assembly techniques to derive high-quality genome sequences. Bioinformatics, 2014, 30, 2709-2716.	4.1	99
51	Thrombin-Mediated Transcriptional Regulation Using DNA Aptamers in DNA-Based Cell-Free Protein Synthesis. ACS Synthetic Biology, 2014, 3, 340-346.	3.8	28
52	Microstructured Block Copolymer Surfaces for Control of Microbe Adhesion and Aggregation. Biosensors, 2014, 4, 63-75.	4.7	9
53	<i>Populus trichocarpa</i> and <i>Populus deltoides</i> Exhibit Different Metabolomic Responses to Colonization by the Symbiotic Fungus <i>Laccaria bicolor</i> . Molecular Plant-Microbe Interactions, 2014, 27, 546-556.	2.6	69
54	Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles. Nanoscale, 2013, 5, 10369.	5.6	20

#	Article	IF	CITATIONS
55	Relating nanomaterial properties and microbial toxicity. Nanoscale, 2013, 5, 463-474.	5.6	211
56	Enteroaggregative Escherichia coli: surface protein dispersin increases bacterial uptake of ciprofloxacin. International Journal of Antimicrobial Agents, 2013, 42, 462-465.	2.5	7
57	Layer-by-Layer Templated Assembly of Silica at the Nanoscale. Langmuir, 2013, 29, 2193-2199.	3.5	6
58	Microscale confinement features can affect biofilm formation. Microfluidics and Nanofluidics, 2013, 14, 895-902.	2.2	42
59	Multi-Input Regulation and Logic with T7 Promoters in Cells and Cell-Free Systems. PLoS ONE, 2013, 8, e78442.	2.5	34
60	Draft Genome Sequence of Rhizobium sp. Strain PDO1-076, a Bacterium Isolated from Populus deltoides. Journal of Bacteriology, 2012, 194, 2383-2384.	2.2	16
61	Adhesion and Formation of Microbial Biofilms in Complex Microfluidic Devices. , 2012, , .		1
62	Research Highlights: Shear-activated nanotherapeutics. Nanomedicine, 2012, 7, 1653-1655.	3.3	2
63	Expression optimization and synthetic gene networks in cell-free systems. Nucleic Acids Research, 2012, 40, 3763-3774.	14.5	113
64	Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator. Biomicrofluidics, 2012, 6, 44108.	2.4	38
65	Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides. Journal of Bacteriology, 2012, 194, 5991-5993.	2.2	164
66	Enzyme Reactions in Nanoporous, Picoliter Volume Containers. Analytical Chemistry, 2012, 84, 1092-1097.	6.5	12
67	<i>Pseudomonas fluorescens</i> Induces Strain-Dependent and Strain-Independent Host Plant Responses in Defense Networks, Primary Metabolism, Photosynthesis, and Fitness. Molecular Plant-Microbe Interactions, 2012, 25, 765-778.	2.6	100
68	In Vivo Toxicity of Titanium Dioxide and Gold Nanoparticles. , 2012, , 1083-1090.		0
69	Bioadhesives. , 2012, , 194-201.		0
70	Cytotoxicity Induced by Engineered Silver Nanocrystallites Is Dependent on Surface Coatings and Cell Types. Langmuir, 2012, 28, 2727-2735.	3.5	222
71	Bacterial Electrical Conduction. , 2012, , 173-173.		0
72	Insect Flight and Micro Air Vehicles (MAVs). , 2012, , 1096-1109.		0

#	Article	IF	CITATIONS
73	Effects of sub-minimum inhibitory concentrations of ciprofloxacin on enteroaggregative Escherichia coli and the role of the surface protein dispersin. International Journal of Antimicrobial Agents, 2011, 38, 27-34.	2.5	16
74	Bacterial Immobilization for Imaging by Atomic Force Microscopy. Journal of Visualized Experiments, 2011, , .	0.3	28
75	Continuous protein production in nanoporous, picolitre volume containers. Lab on A Chip, 2011, 11, 3523.	6.0	38
76	Microbial Cell Imaging Using Atomic Force Microscopy. , 2011, , 45-70.		0
77	Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy. FEMS Microbiology Letters, 2011, 314, 131-139.	1.8	14
78	The chemotaxis-like Che1 pathway has an indirect role in adhesive cell properties of Azospirillum brasilense. FEMS Microbiology Letters, 2011, 323, 105-112.	1.8	21
79	Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomaterialia, 2011, 7, 4253-4258.	8.3	138
80	Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomaterialia, 2011, 7, 2148-2152.	8.3	247
81	Model for biological communication in a nanofabricated cell-mimic driven by stochastic resonance. Nano Communication Networks, 2011, 2, 39-49.	2.9	12
82	Electric field induced bacterial flocculation of enteroaggregativeEscherichia coli042. Applied Physics Letters, 2011, 98, 253701.	3.3	9
83	Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types. Applied and Environmental Microbiology, 2011, 77, 5934-5944.	3.1	524
84	Atomic force microscopy of biological samples. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 618-634.	6.1	160
85	Nanostructured silicon membranes for control of molecular transport. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6P48-C6P52.	1.2	7
86	An optimized nanoparticle separator enabled by electron beam induced deposition. Nanotechnology, 2010, 21, 165303.	2.6	13
87	Surface Charge- and Space-Dependent Transport of Proteins in Crowded Environments of Nanotailored Posts. ACS Nano, 2010, 4, 3345-3355.	14.6	23
88	Effects of Engineered Cerium Oxide Nanoparticles on Bacterial Growth and Viability. Applied and Environmental Microbiology, 2010, 76, 7981-7989.	3.1	323
89	Silver Nanocrystallites: Biofabrication using <i>Shewanella oneidensis,</i> and an Evaluation of Their Comparative Toxicity on Gram-negative and Gram-positive Bacteria. Environmental Science & Technology, 2010, 44, 5210-5215.	10.0	299
90	A surfactant and template-free route for synthesizing ceria nanocrystals with tunable morphologies. Journal of Materials Chemistry, 2010, 20, 7776.	6.7	49

#	Article	IF	CITATIONS
91	Development and fabrication of nanoporous silicon-based bioreactors within a microfluidic chip. Lab on A Chip, 2010, 10, 1174.	6.0	33
92	Controlled microfluidic production of alginate beads for in situ encapsulation of microbes. , 2009, , .		5
93	Cell free translation in engineered picoliter volume containers. , 2009, 2009, 1-4.		5
94	Diverse and conserved nano―and mesoscale structures of diatom silica revealed by atomic force microscopy. Journal of Microscopy, 2009, 235, 172-187.	1.8	38
95	An in vivo imaging-based assay for detecting protein interactions over a wide range of binding affinities. Analytical Biochemistry, 2009, 395, 166-177.	2.4	2
96	Effects of ultramicroelectrode dimensions on the electropolymerization of polypyrrole. Journal of Applied Physics, 2009, 105, 124312.	2.5	8
97	Effects of Colistin on Surface Ultrastructure and Nanomechanics of Pseudomonas aeruginosa Cells. Langmuir, 2009, 25, 3728-3733.	3.5	85
98	A Comparison of Hybridization Efficiency between Flat Glass and Channel Glass Solid Supports. Molecular Biotechnology, 2008, 38, 71-80.	2.4	4
99	Channel Glass-based Detection of Human Short Insertion/Deletion Polymorphisms by Tandem Hybridization. Molecular Biotechnology, 2008, 38, 145-153.	2.4	2
100	Application of AFM in understanding biomineral formation in diatoms. Pflugers Archiv European Journal of Physiology, 2008, 456, 127-137.	2.8	47
101	Positional control of catalyst nanoparticles for the synthesis of high density carbon nanofiber arrays. Carbon, 2008, 46, 1378-1383.	10.3	9
102	A General System for Studying Proteinâ^'Protein Interactions in Gram-Negative Bacteria. Journal of Proteome Research, 2008, 7, 3319-3328.	3.7	24
103	Actuatable Membranes Based on Polypyrrole-Coated Vertically Aligned Carbon Nanofibers. ACS Nano, 2008, 2, 247-254.	14.6	26
104	Size-selectivity and anomalous subdiffusion of nanoparticles through carbon nanofiber-based membranes. Nanotechnology, 2008, 19, 415301.	2.6	13
105	Chapter 4 Biomineralization at the Nanoscale. Methods in Cell Biology, 2008, 90, 61-86.	1.1	11
106	Controlling the dimensions of carbon nanofiber structures through the electropolymerization of pyrrole. Synthetic Metals, 2007, 157, 282-289.	3.9	18
107	Nanoâ€enabled synthetic biology. Molecular Systems Biology, 2007, 3, 125.	7.2	124
108	Comparison of the indentation and elasticity of E. coli and its spheroplasts by AFM. Ultramicroscopy, 2007, 107, 934-942.	1.9	33

#	Article	IF	CITATIONS
109	The Near-Naked Hairless (Hr) Mutation Disrupts Hair Formation but Is Not Due to a Mutation in the Hairless Coding Region. Journal of Investigative Dermatology, 2007, 127, 1605-1614.	0.7	8
110	Reversible Electrowetting of Vertically Aligned Superhydrophobic Carbon Nanofibers. Langmuir, 2006, 22, 9030-9034.	3.5	98
111	Site-Specific Biochemical Functionalization along the Height of Vertically Aligned Carbon Nanofiber Arrays. Chemistry of Materials, 2006, 18, 3203-3211.	6.7	33
112	Evaluation of a surface-sampling probe electrospray mass spectrometry system for the analysis of surface-deposited and affinity-captured proteins. Rapid Communications in Mass Spectrometry, 2006, 20, 1144-1152.	1.5	29
113	Control of catalyst particle crystallographic orientation in vertically aligned carbon nanofiber synthesis. Carbon, 2006, 44, 1503-1510.	10.3	27
114	Automated image analysis of atomic force microscopy images of rotavirus particles. Ultramicroscopy, 2006, 106, 829-837.	1.9	30
115	Measuring cell surface elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM. Ultramicroscopy, 2006, 106, 695-702.	1.9	44
116	Nanoscale control of silica morphology and three-dimensional structure during diatom cell wall formation. Journal of Materials Research, 2006, 21, 2689-2698.	2.6	100
117	Molecular transport in a crowded volume created from vertically aligned carbon nanofibres: a fluorescence recovery after photobleaching study. Nanotechnology, 2006, 17, 5659-5668.	2.6	17
118	Global Molecular and Morphological Effects of 24-Hour Chromium(VI) Exposure on Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 2006, 72, 6331-6344.	3.1	96
119	Biochemical functionalization of vertically aligned carbon nanofibres. Nanotechnology, 2006, 17, 2032-2039.	2.6	29
120	Cellular secretion studied by force microscopy. Journal of Cellular and Molecular Medicine, 2006, 10, 847-856.	3.6	0
121	Mounting of Escherichia coli spheroplasts for AFM imaging. Ultramicroscopy, 2005, 105, 96-102.	1.9	26
122	Reagent Jetting Based Deposition Technologies for Array Construction. Biological and Medical Physics Series, 2005, , 63-72.	0.4	1
123	Automated Image Analysis of Fluorescence Microscopic Images to Identify Protein-protein Interactions. , 2005, 2006, 797-800.		1
124	Tailored transport through vertically aligned carbon nanofibre membranes; controlled synthesis, modelling, and passive diffusion experiments. Nanotechnology, 2005, 16, 3101-3109.	2.6	17
125	Optimized beadmilling of tissues for high-throughput RNA production and microarray-based analyses. Analytical Biochemistry, 2004, 332, 100-108.	2.4	6
126	Microarrays of Biomimetic Cells Formed by the Controlled Synthesis of Carbon Nanofiber Membranes. Nano Letters, 2004, 4, 1809-1814.	9.1	45

#	Article	IF	CITATIONS
127	Surface Patterning of Silica Nanostructures Using Bio-Inspired Templates and Directed Synthesis. Langmuir, 2004, 20, 8431-8436.	3.5	61
128	DNA Microarrays Detect 4-Nonylphenol-induced Alterations in Gene Expression During Zebrafish Early Development. Ecotoxicology, 2003, 12, 469-474.	2.4	47
129	AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy, 2003, 97, 209-216.	1.9	186
130	Effects of Microfabrication Processing on the Electrochemistry of Carbon Nanofiber Electrodes. Journal of Physical Chemistry B, 2003, 107, 10722-10728.	2.6	29
131	Vertically aligned carbon nanofibers as sacrificial templates for nanofluidic structures. Applied Physics Letters, 2003, 82, 976-978.	3.3	34
132	Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology, 2003, 14, 551-556.	2.6	187
133	Fingerprinting of prokaryotic 16S rRNA genes using oligodeoxyribonucleotide microarrays and virtual hybridization. Nucleic Acids Research, 2003, 31, 779-789.	14.5	32
134	Instrumentation for continuous array genotyping of short insertion/deletion polymorphisms. , 2003, 4966, 138.		1
135	Automated High-Throughput Probe Production for DNA Microarray Analysis. BioTechniques, 2003, 34, 402-407.	1.8	5
136	Glucose biosensing using an enzyme-coated microcantilever. Applied Physics Letters, 2002, 81, 385-387.	3.3	101
137	Genomes to Life "Center for Molecular and Cellular Systems": A Research Program for Identification and Characterization of Protein Complexes. OMICS A Journal of Integrative Biology, 2002, 6, 287-303.	2.0	7
138	Nanopipe fabrication using vertically aligned carbon nanofiber templates. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2730.	1.6	15
139	Controlled transport of latex beads through vertically aligned carbon nanofiber membranes. Applied Physics Letters, 2002, 81, 135-137.	3.3	54
140	Towards environmental toxicogenomics — development of a flow-through, high-density DNA hybridization array and its application to ecotoxicity assessment. Science of the Total Environment, 2001, 274, 137-149.	8.0	23
141	Improving Spot Homogeneity by Using Polymer Substrates in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Oligonucleotides. Analytical Chemistry, 2001, 73, 2617-2624.	6.5	52
142	Modification of an Automated Liquid-Handling System for Reagent-Jet, Nanoliter-Level Dispensing. BioTechniques, 2001, 30, 878-885.	1.8	16
143	Spin-column isolation of DNA–protein interactions from complex protein mixtures for AFM imaging. Ultramicroscopy, 2001, 86, 139-143.	1.9	7
144	Identifying sequence similarities between DNA molecules. Ultramicroscopy, 2000, 82, 237-244.	1.9	3

#	Article	IF	CITATIONS
145	Comparison of techniques for enzyme immobilization on silicon supports. Enzyme and Microbial Technology, 1999, 24, 26-34.	3.2	164
146	MALDI-TOF Analysis of Polymerase Chain Reaction Products from Methanotrophic Bacteria. Analytical Chemistry, 1998, 70, 2693-2698.	6.5	30
147	Comparative analyses of the secondary structures of synthetic and intracellular yeast MFA2 mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14614-14621.	7.1	21
148	<title>Detection and analysis of polymerase chain reaction products by mass spectrometry</title> . , 1997, 2985, 120.		1
149	Mapping Individual Cosmid DNAs by Direct AFM Imaging. Genomics, 1997, 41, 379-384.	2.9	46
150	Direct atomic force microscope imaging of EcoRI endonuclease site specifically bound to plasmid DNA molecules Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8826-8829.	7.1	57
151	Detection of Bacterial DNA Polymerase Chain Reaction Products by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 377-382.	1.5	52
152	Detection of Bacterial DNA Polymerase Chain Reaction Products by Matrixâ€assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 377-382.	1.5	1
153	Mapping site-specific endonuclease binding to DNA by direct imaging with atomic force microscopy (AFM). , 1995, , .		0
154	Optical melting as a tool for optimizing sequencing by hybridization (SBH) analysis of DNA. , 1995, , .		1
155	Analysis of Polymerase Chain Reaction-Amplified DNA Products by Mass Spectrometry Using Matrix-Assisted Laser Desorption and Electrospray: Current Status. Analytical Biochemistry, 1995, 230, 205-214.	2.4	67
156	Optical Melting of 128 Octamer DNA Duplexes. Journal of Biological Chemistry, 1995, 270, 8439-8445.	3.4	72
157	Accumulation and Storage of Ionized Duplex DNA Molecules in a Quadrupole Ion Trap. Analytical Chemistry, 1994, 66, 3416-3422.	6.5	51
158	Discontinuous Electrophoresis of DNA: Adjusting DNA Mobility by Trailing Ion Net Mobility. Analytical Biochemistry, 1993, 213, 400-406.	2.4	10
159	Studies of DNA dumbbells. IV. Preparation and melting of a DNA dumbbell with the 16 base-pair sequence5?G-T-A-T-C-C-C-T-C-T-G-G-A-T-A-C3? linked on the ends by dodecyl chains. Biopolymers, 1993, 33, 1765-1777.	2.4	20
160	Studies of DNA dumbbells. V. A DNA triplex formed between a 28 base-pair DNA dumbbell substrate and a 16 base linear single strand. Biopolymers, 1993, 33, 1779-1789.	2.4	10
161	Sequence Dependence of the Free Energy of B-Z Junction Formation in Deoxyoligonucleotides. Journal of Molecular Biology, 1993, 231, 475-488.	4.2	36
162	<title>Development of resonance ionization spectroscopy for genome mapping and DNA sequencing using stable isotopes as DNA labels</title> ., 1993, 1891, 27.		0

#	Article	IF	CITATIONS
163	Studies of DNA dumbbells. I. Melting curves of 17 DNA dumbbells with different duplex stem sequences linked by T4 endloops: Evaluation of the nearest-neighbor stacking interactions in DNA. Biopolymers, 1992, 32, 849-864.	2.4	123
164	Electrophoresis and detection of tin-labeled DNAs on open-faced gels. Electrophoresis, 1992, 13, 521-528.	2.4	4
165	Analysis of melting transitions of the DNA hairpins formed from the oligomer sequences d[GGATAC(X)4GTATCC] (X = A, T, G, C). Biopolymers, 1990, 29, 1715-1734.	2.4	59
166	Thermodynamic stability of the 5? dangling-ended DNA hairpins formed from sequences 5?-(XY)2GGATAC(T)4GTATCC-3?, where X, Y = A,T,G,C. Biopolymers, 1990, 30, 829-845.	2.4	45
167	Energetics of B-Z junction formation in a sixteen base-pair duplex DNA. Journal of Molecular Biology, 1990, 212, 3-6.	4.2	19