Chris Hawes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9506369/publications.pdf

Version: 2024-02-01

53794 79698 8,600 74 45 73 citations h-index g-index papers 81 81 81 7126 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 2006, 1, 2019-2025.	12.0	1,534
2	Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER networkâ€. Plant Journal, 1998, 15, 441-447.	5.7	818
3	A Rab1 GTPase Is Required for Transport between the Endoplasmic Reticulum and Golgi Apparatus and for Normal Golgi Movement in Plants. Plant Cell, 2000, 12, 2201-2217.	6.6	550
4	Membrane Protein Transport between the Endoplasmic Reticulum and the Golgi in Tobacco Leaves Is Energy Dependent but Cytoskeleton Independent. Plant Cell, 2002, 14, 1293-1309.	6.6	303
5	Endoplasmic Reticulum Export Sites and Golgi Bodies Behave as Single Mobile Secretory Units in Plant Cells[W]. Plant Cell, 2004, 16, 1753-1771.	6.6	258
6	Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant Journal, 2002, 29, 661-678.	5.7	247
7	The Destination for Single-Pass Membrane Proteins Is Influenced Markedly by the Length of the Hydrophobic Domain. Plant Cell, 2002, 14, 1077-1092.	6.6	207
8	Plant N-Glycan Processing Enzymes Employ Different Targeting Mechanisms for Their Spatial Arrangement along the Secretory Pathway. Plant Cell, 2006, 18, 3182-3200.	6.6	201
9	Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. Journal of Experimental Botany, 2006, 57, 43-50.	4.8	190
10	The Plant Cytoskeleton, NET3C, and VAP27 Mediate the Link between the Plasma Membrane and Endoplasmic Reticulum. Current Biology, 2014, 24, 1397-1405.	3.9	180
11	Five <i>Arabidopsis</i> Reticulon Isoforms Share Endoplasmic Reticulum Location, Topology, and Membrane-Shaping Properties. Plant Cell, 2010, 22, 1333-1343.	6.6	173
12	A Comparative Study of the Involvement of 17 Arabidopsis Myosin Family Members on the Motility of Golgi and Other Organelles Â. Plant Physiology, 2009, 150, 700-709.	4.8	163
13	Grab a Golgi: Laser Trapping of Golgi Bodies Reveals <i>in vivo</i> Interactions with the Endoplasmic Reticulum. Traffic, 2009, 10, 567-571.	2.7	150
14	A GFPâ€based assay reveals a role for RHD3 in transport between the endoplasmic reticulum and Golgi apparatus. Plant Journal, 2004, 37, 398-414.	5.7	148
15	Plant neurobiology: no brain, no gain?. Trends in Plant Science, 2007, 12, 135-136.	8.8	146
16	Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: a genetic tool for the next generation. Journal of Experimental Botany, 2008, 59, 2499-2512.	4.8	140
17	Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 452-457.	7.1	130
18	Overexpression of a Plant Reticulon Remodels the Lumen of the Cortical Endoplasmic Reticulum but Does not Perturb Protein Transport. Traffic, 2008, 9, 94-102.	2.7	124

#	Article	IF	Citations
19	Plant Endoplasmic Reticulum–Plasma Membrane Contact Sites. Trends in Plant Science, 2017, 22, 289-297.	8.8	122
20	ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants. Plant Journal, 2003, 34, 269-281.	5.7	118
21	BFA effects are tissue and not just plant specific. Trends in Plant Science, 2008, 13, 405-408.	8.8	116
22	Plant <scp>VAP</scp> 27 proteins: domain characterization, intracellular localization and role in plant development. New Phytologist, 2016, 210, 1311-1326.	7.3	110
23	The plant endoplasmic reticulum: a cell-wide web. Biochemical Journal, 2009, 423, 145-155.	3.7	107
24	A Missense Mutation in the <i>Arabidopsis</i> COPII Coat Protein Sec24A Induces the Formation of Clusters of the Endoplasmic Reticulum and Golgi Apparatus. Plant Cell, 2009, 21, 3655-3671.	6.6	103
25	In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery. Plant Journal, 2006, 46, 95-110.	5.7	93
26	Putting the Squeeze on Plasmodesmata: A Role for Reticulons in Primary Plasmodesmata Formation. Plant Physiology, 2015, 168, 1563-1572.	4.8	89
27	Arginine/Lysine Residues in the Cytoplasmic Tail Promote ER Export of Plant Glycosylation Enzymes. Traffic, 2009, 10, 101-115.	2.7	84
28	Arabidopsis NAP1 Regulates the Formation of Autophagosomes. Current Biology, 2016, 26, 2060-2069.	3.9	83
29	Vesicles versus Tubes: Is Endoplasmic Reticulum-Golgi Transport in Plants Fundamentally Different from Other Eukaryotes?. Plant Physiology, 2015, 168, 393-406.	4.8	80
30	Sec22 and Memb11 Are v-SNAREs of the Anterograde Endoplasmic Reticulum-Golgi Pathway in Tobacco Leaf Epidermal Cells. Plant Physiology, 2005, 139, 1244-1254.	4.8	79
31	Transmembrane domain length is responsible for the ability of a plant reticulon to shape endoplasmic reticulum tubules in vivo. Plant Journal, 2010, 64, 411-418.	5.7	78
32	A Recycling-Defective Vacuolar Sorting Receptor Reveals an Intermediate Compartment Situated between Prevacuoles and Vacuoles in Tobacco. Plant Cell, 2011, 22, 3992-4008.	6.6	77
33	Reticulomics: Protein-protein interaction studies with two plasmodesmata-localised reticulon family proteins identify binding partners enriched at plasmodesmata, ER and the plasma membrane. Plant Physiology, 2015, 169, pp.01153.2015.	4.8	76
34	Plants Neither Possess nor Require Consciousness. Trends in Plant Science, 2019, 24, 677-687.	8.8	75
35	The endoplasmic reticulum: A dynamic and wellâ€connected organelle. Journal of Integrative Plant Biology, 2015, 57, 50-62.	8.5	72
36	ER confirmed as the location of mystery organelles in Arabidopsis plants expressing GFP!. Trends in Plant Science, 2001, 6, 245-246.	8.8	71

#	Article	IF	CITATIONS
37	Localization and domain characterization of Arabidopsis golgin candidates. Journal of Experimental Botany, 2007, 58, 4373-4386.	4.8	69
38	AtPEX2 and AtPEX10 Are Targeted to Peroxisomes Independently of Known Endoplasmic Reticulum Trafficking Routes. Plant Physiology, 2005, 139, 690-700.	4.8	67
39	An Arabidopsis GRIP domain protein locates to the trans-Golgi and binds the small GTPase ARL1. Plant Journal, 2005, 44, 459-470.	5.7	66
40	Holding it all together? Candidate proteins for the plant Golgi matrix. Current Opinion in Plant Biology, 2005, 8, 632-639.	7.1	65
41	The Plant ER–Golgi Interface. Traffic, 2008, 9, 1571-1580.	2.7	60
42	ER – the key to the highway. Current Opinion in Plant Biology, 2014, 22, 30-38.	7.1	60
43	Fluorescent labelling of the actin cytoskeleton in plants using a cameloid antibody. Plant Methods, 2014, 10, 12.	4.3	57
44	Quantitative analysis of plant ER architecture and dynamics. Nature Communications, 2019, 10, 984.	12.8	56
45	Protein Storage Vacuoles Originate from Remodeled Preexisting Vacuoles in <i>Arabidopsis thaliana</i> . Plant Physiology, 2018, 177, 241-254.	4.8	52
46	Time-Resolved Fluorescence Imaging Reveals Differential Interactions of <i>N</i> -Glycan Processing Enzymes across the Golgi Stack in Planta \hat{A} \hat{A} . Plant Physiology, 2013, 161, 1737-1754.	4.8	51
47	An <scp>A</scp> rabidopsis reticulon and the atlastin homologue <scp><i>RHD3â€like2</i></scp> act together in shaping the tubular endoplasmic reticulum. New Phytologist, 2013, 197, 481-489.	7.3	50
48	A C-terminal amphipathic helix is necessary for the in vivo tubule-shaping function of a plant reticulon. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10902-10907.	7.1	49
49	Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway. Journal of Experimental Botany, 2016, 67, 4195-4207.	4.8	48
50	Fluorescence Lifetime Imaging of Interactions between Golgi Tethering Factors and Small GTPases in Plants. Traffic, 2009, 10, 1034-1046.	2.7	45
51	Golgi Regeneration after Brefeldin A Treatment in BY-2 Cells Entails Stack Enlargement and Cisternal Growth followed by Division. Plant Physiology, 2007, 145, 527-538.	4.8	43
52	Golgi membrane dynamics after induction of a dominant-negative mutant Sar1 GTPase in tobacco. Journal of Experimental Botany, 2010, 61, 405-422.	4.8	42
53	Sequential Depletion and Acquisition of Proteins during Golgi Stack Disassembly and Reformation. Traffic, 2010, 11, 1429-1444.	2.7	40
54	Secretory Pathway Research: The More Experimental Systems the Better. Plant Cell, 2012, 24, 1316-1326.	6.6	39

#	Article	IF	Citations
55	Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum-Golgi apparatus tethering. Journal of Experimental Botany, 2017, 68, 3339-3350.	4.8	36
56	Optical tweezers for the micromanipulation of plant cytoplasm and organelles. Current Opinion in Plant Biology, 2010, 13, 731-735.	7.1	35
57	Arabidopsis Lunapark proteins are involved in <scp>ER</scp> cisternae formation. New Phytologist, 2018, 219, 990-1004.	7.3	29
58	Biogenesis of the plant Golgi apparatus. Biochemical Society Transactions, 2010, 38, 761-767.	3.4	25
59	An inhibitor of oil body mobilization in Arabidopsis. New Phytologist, 2013, 200, 641-649.	7.3	25
60	A signal motif retains Arabidopsis ER-α-mannosidase I in the cis-Golgi and prevents enhanced glycoprotein ERAD. Nature Communications, 2019, 10, 3701.	12.8	25
61	Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes. Journal of Experimental Botany, 2015, 66, 6009-6020.	4.8	24
62	The ER/Golgi Interface – Is There Anything in-between?. Frontiers in Plant Science, 2012, 3, 73.	3.6	23
63	The transmembrane domain of <i>N</i> –acetylglucosaminyltransferaseÂl is the key determinant for its Golgi subcompartmentation. Plant Journal, 2014, 80, 809-822.	5.7	22
64	Predominant Golgi Residency of the Plant K/HDEL Receptor Is Essential for Its Function in Mediating ER Retention. Plant Cell, 2018, 30, 2174-2196.	6.6	19
65	p24 Family Proteins Are Involved in Transport to the Plasma Membrane of GPI-Anchored Proteins in Plants. Plant Physiology, 2020, 184, 1333-1347.	4.8	19
66	The odd one out: Arabidopsis reticulon 20 does not bend ER membranes but has a role in lipid regulation. Scientific Reports, 2018, 8, 2310.	3.3	18
67	Functional characterization of Schistosoma mansoni fucosyltransferases in Nicotiana benthamiana plants. Scientific Reports, 2020, 10, 18528.	3.3	14
68	Auxin and Vesicle Traffic. Plant Physiology, 2018, 176, 1884-1888.	4.8	8
69	Labeling the ER for Light and Fluorescence Microscopy. Methods in Molecular Biology, 2018, 1691, 1-14.	0.9	6
70	Differences in intracellular localisation of ANKH mutants that relate to mechanisms of calcium pyrophosphate deposition disease and craniometaphyseal dysplasia. Scientific Reports, 2020, 10, 7408.	3.3	6
71	Characterization of Proteins Localized to Plant ER-PM Contact Sites. Methods in Molecular Biology, 2018, 1691, 23-31.	0.9	4
72	Glycaemic index, glycaemic load and dietary fibre characteristics of two commercially available fruit smoothies. International Journal of Food Sciences and Nutrition, 2019, 70, 116-123.	2.8	2

#	Article	IF	CITATIONS
73	In memoriam – Ian Moore. Journal of Cell Science, 2019, 132, .	2.0	2
74	Optimization of Sample Preparation Methods and SEM Imaging Conditions Enables High Resolution X-ray Mapping of Essential Elements in Biological Specimens. Microscopy and Microanalysis, 2019, 25, 1090-1091.	0.4	0