
Heenam Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9506161/publications.pdf Version: 2024-02-01

HEENAM KIM

#	Article	IF	CITATIONS
1	Do an Altered Gut Microbiota and an Associated Leaky Gut Affect COVID-19 Severity?. MBio, 2021, 12, .	4.1	62
2	Non-catalytic-Region Mutations Conferring Transition of Class A β-Lactamases Into ESBLs. Frontiers in Molecular Biosciences, 2020, 7, 598998.	3.5	0
3	Mutations in ArgS Arginine-tRNA Synthetase Confer Additional Antibiotic Tolerance Protection to Extended-Spectrum-1²-Lactamase-Producing Burkholderia thailandensis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	1
4	Mutations in MetG (methionyl-tRNA synthetase) and TrmD [tRNA (guanine-N1)-methyltransferase] conferring meropenem tolerance in Burkholderia thailandensis. Journal of Antimicrobial Chemotherapy, 2018, 73, 332-338.	3.0	7
5	Antibiotic Scars Left on the Gut Microbiota from the Stringent Response. Trends in Microbiology, 2018, 26, 735-737.	7.7	6
6	High adaptability of the omega loop underlies the substrate-spectrum-extension evolution of a class A β-lactamase, PenL. Scientific Reports, 2016, 6, 36527.	3.3	15
7	Faecalibacterium prausnitzii subspecies–level dysbiosis in the human gut microbiome underlying atopic dermatitis. Journal of Allergy and Clinical Immunology, 2016, 137, 852-860.	2.9	292
8	Cell Wall Recycling-Linked Coregulation of AmpC and PenB β-Lactamases through <i>ampD</i> Mutations in Burkholderia cenocepacia. Antimicrobial Agents and Chemotherapy, 2015, 59, 7602-7610.	3.2	24
9	The Tandem Repeats Enabling Reversible Switching between the Two Phases of β-Lactamase Substrate Spectrum. PLoS Genetics, 2014, 10, e1004640.	3.5	11
10	Deletion Mutations Conferring Substrate Spectrum Extension in the Class A β-Lactamase. Antimicrobial Agents and Chemotherapy, 2014, 58, 6265-6269.	3.2	11
11	Development of a random genomic DNA microarray for the detection and identification of Listeria monocytogenes in milk. International Journal of Food Microbiology, 2013, 161, 134-141.	4.7	41
12	Substrate Spectrum Extension of PenA in Burkholderia thailandensis with a Single Amino Acid Deletion, Glu168del. Antimicrobial Agents and Chemotherapy, 2012, 56, 4005-4008.	3.2	15
13	Twelve Positions in a β-Lactamase That Can Expand Its Substrate Spectrum with a Single Amino Acid Substitution. PLoS ONE, 2012, 7, e37585.	2.5	36
14	Our Genome and Our other Genome: Understanding humans as Symbionts with Microbes. Journal of Bacteriology and Virology, 2012, 42, 101.	0.1	1
15	Continuing Evolution of Burkholderia mallei Through Genome Reduction and Large-Scale Rearrangements. Genome Biology and Evolution, 2010, 2, 102-116.	2.5	106
16	The Early Stage of Bacterial Genome-Reductive Evolution in the Host. PLoS Pathogens, 2010, 6, e1000922.	4.7	98
17	Investigation of plasma-functionalized multiwalled carbon nanotube film and its application of DNA sensor for Legionella pneumophila detection. Talanta, 2010, 82, 904-911.	5.5	19
18	Simple Sequence Repeat (SSR)-Based Gene Diversity in Burkholderia pseudomallei and Burkholderia mallei. Molecules and Cells, 2009, 27, 237-241.	2.6	8

Неемам Кім

#	Article	IF	CITATIONS
19	Crystal structure of a PduOâ€type ATP:cobalamin adenosyltransferase from <i>Burkholderia thailandensis</i> . Proteins: Structure, Function and Bioinformatics, 2008, 72, 1066-1070.	2.6	5
20	SreAâ€mediated iron regulation in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2008, 70, 27-43.	2.5	233
21	Microarray data mining using landmark gene-guided clustering. BMC Bioinformatics, 2008, 9, 92.	2.6	20
22	Opine-Based <i>Agrobacterium</i> Competitiveness: Dual Expression Control of the Agrocinopine Catabolism (<i>acc</i>) Operon by Agrocinopines and Phosphate Levels. Journal of Bacteriology, 2008, 190, 3700-3711.	2.2	18
23	<i>Aspergillus flavus</i> genomics as a tool for studying the mechanism of aflatoxin formation. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 1152-1157.	2.3	38
24	Sub-Telomere Directed Gene Expression during Initiation of Invasive Aspergillosis. PLoS Pathogens, 2008, 4, e1000154.	4.7	228
25	Impaired Ribosome Biogenesis Disrupts the Integration between Morphogenesis and Nuclear Duplication during the Germination of <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2008, 7, 575-583.	3.4	11
26	Transcriptional Regulation of Chemical Diversity in Aspergillus fumigatus by LaeA. PLoS Pathogens, 2007, 3, e50.	4.7	326
27	Aflatoxin formation and gene expression in response to carbon source media shift in <i>Aspergillus parasiticus</i> . Food Additives and Contaminants, 2007, 24, 1051-1060.	2.0	30
28	Type VI secretion is a major virulence determinant inBurkholderia mallei. Molecular Microbiology, 2007, 64, 1466-1485.	2.5	293
29	Genome sequence alterations detected upon passage of Burkholderia mallei ATCC 23344 in culture and in mammalian hosts. BMC Genomics, 2006, 7, 228.	2.8	27
30	Development of a polymerase chain reaction assay for the specific identification of Burkholderia mallei and differentiation from Burkholderia pseudomallei and other closely related Burkholderiaceae. Diagnostic Microbiology and Infectious Disease, 2006, 55, 37-45.	1.8	32
31	The aflatoxin pathway regulator AflR induces gene transcription inside and outside of the aflatoxin biosynthetic cluster. FEMS Microbiology Letters, 2006, 255, 275-279.	1.8	148
32	Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Current Genetics, 2006, 50, 32-44.	1.7	152
33	Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis. BMC Microbiology, 2006, 6, 46.	3.3	158
34	Evolution of sensory complexity recorded in a myxobacterial genome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15200-15205.	7.1	424
35	Genome-wide expression analysis of iron regulation inBurkholderia pseudomalleiandBurkholderia malleiusing DNA microarrays. FEMS Microbiology Letters, 2005, 252, 327-335.	1.8	51
36	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272

Ηεενά Κιμ

#	Article	IF	CITATIONS
37	Bacterial genome adaptation to niches: Divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics, 2005, 6, 174.	2.8	142
38	TheAspergillus fumigatusStuA Protein Governs the Up-Regulation of a Discrete Transcriptional Program during the Acquisition of Developmental Competence. Molecular Biology of the Cell, 2005, 16, 5866-5879.	2.1	114
39	What theAspergillusgenomes have told us. Medical Mycology, 2005, 43, 3-5.	0.7	31
40	Contribution of Gene Loss to the Pathogenic Evolution of Burkholderia pseudomallei and Burkholderia mallei. Infection and Immunity, 2004, 72, 4172-4187.	2.2	112
41	Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome. Plant Journal, 2004, 41, 212-220.	5.7	48
42	Structural flexibility in the <i>Burkholderia mallei</i> genome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14246-14251.	7.1	366
43	Gene Expression Analyses of Arabidopsis Chromosome 2 Using a Genomic DNA Amplicon Microarray. Genome Research, 2003, 13, 327-340.	5.5	29
44	Opine Catabolic Loci from Agrobacterium Plasmids Confer Chemotaxis to Their Cognate Substrates. Molecular Plant-Microbe Interactions, 1998, 11, 131-143.	2.6	35
45	Characterization of the acc operon from the nopaline-type Ti plasmid pTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84. Journal of Bacteriology, 1997, 179, 7559-7572.	2.2	55