
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9505869/publications.pdf Version: 2024-02-01

DETED A REAL

#	Article	IF	CITATIONS
1	Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nature Methods, 2018, 15, 53-56.	19.0	368
2	Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nature Structural and Molecular Biology, 2016, 23, 426-433.	8.2	154
3	RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20715-20719.	7.1	132
4	DNA capture by a CRISPR-Cas9–guided adenine base editor. Science, 2020, 369, 566-571.	12.6	114
5	Chemical Modification of siRNA Bases To Probe and Enhance RNA Interference. Journal of Organic Chemistry, 2011, 76, 7295-7300.	3.2	87
6	Nucleobase and Ribose Modifications Control Immunostimulation by a MicroRNA-122-mimetic RNA. Journal of the American Chemical Society, 2011, 133, 9200-9203.	13.7	70
7	6-Bromopurine Nucleosides as Reagents for Nucleoside Analogue Synthesis. Journal of Organic Chemistry, 2001, 66, 8592-8598.	3.2	69
8	The Binding Selectivity of ADAR2's dsRBMs Contributes to RNA-Editing Selectivity. Chemistry and Biology, 2004, 11, 1239-1250.	6.0	67
9	Novel Modifications in RNA. ACS Chemical Biology, 2012, 7, 100-109.	3.4	67
10	Analysis of the RNA-Editing Reaction of ADAR2 with Structural and Fluorescent Analogues of the GluR-B R/G Editing Site. Biochemistry, 2000, 39, 12243-12251.	2.5	62
11	Substrate Analogues for an RNA-Editing Adenosine Deaminase:Â Mechanistic Investigation and Inhibitor Design. Journal of the American Chemical Society, 2003, 125, 10867-10876.	13.7	61
12	On-Enzyme Refolding Permits Small RNA and tRNA Surveillance by the CCA-Adding Enzyme. Cell, 2015, 160, 644-658.	28.9	61
13	Conformational Changes That Occur during an RNA-editing Adenosine Deamination Reaction. Journal of Biological Chemistry, 2001, 276, 37827-37833.	3.4	53
14	DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Research, 2017, 45, gkx050.	14.5	53
15	ADAR Proteins: Structure and Catalytic Mechanism. Current Topics in Microbiology and Immunology, 2011, 353, 1-33.	1.1	48
16	Differentiating Positional Isomers of Nucleoside Modifications by Higher-Energy Collisional Dissociation Mass Spectrometry (HCD MS). Journal of the American Society for Mass Spectrometry, 2018, 29, 1745-1756.	2.8	43
17	<i>N</i> ² -Modified 2-aminopurine ribonucleosides as minor-groove-modulating adenosine replacements in duplex RNA. Organic Letters, 2010, 12, 1044-1047.	4.6	41
18	How do ADARs bind RNA? New proteinâ€RNA structures illuminate substrate recognition by the RNA editing ADARs. BioEssays, 2017, 39, 1600187.	2.5	41

#	Article	IF	CITATIONS
19	Off-Target Editing by CRISPR-Guided DNA Base Editors. Biochemistry, 2019, 58, 3727-3734.	2.5	40
20	RNA-Seq Analysis Identifies a Novel Set of Editing Substrates for Human ADAR2 Present in Saccharomyces cerevisiae. Biochemistry, 2013, 52, 7857-7869.	2.5	38
21	Recognition of duplex RNA by the deaminase domain of the RNA editing enzyme ADAR2. Nucleic Acids Research, 2015, 43, 1123-1132.	14.5	38
22	A Transition State Analogue for an RNA-Editing Reaction. Journal of the American Chemical Society, 2004, 126, 11213-11219.	13.7	35
23	Structure-Guided Control of siRNA Off-Target Effects. Journal of the American Chemical Society, 2016, 138, 8667-8669.	13.7	35
24	Selective Recognition of RNA Substrates by ADAR Deaminase Domains. Biochemistry, 2018, 57, 1640-1651.	2.5	35
25	Solid-Phase Synthesis of Acridineâ^'Peptide Conjugates and Their Analysis by Tandem Mass Spectrometry. Organic Letters, 2000, 2, 1465-1468.	4.6	34
26	Synthesis and Analysis of RNA Containing 6-Trifluoromethylpurine Ribonucleoside. Organic Letters, 2001, 3, 2969-2972.	4.6	34
27	Selective Binding by the RNA Binding Domain of PKR Revealed by Affinity Cleavageâ€. Biochemistry, 2001, 40, 4272-4280.	2.5	33
28	Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition. Nucleic Acids Research, 2020, 48, 7958-7972.	14.5	33
29	A Fluorescent Adenosine Analogue as a Substrate for an Aâ€ŧoâ€ŀ RNA Editing Enzyme. Angewandte Chemie - International Edition, 2015, 54, 8713-8716.	13.8	30
30	Controlling miRNA-like off-target effects of an siRNA with nucleobase modifications. Organic and Biomolecular Chemistry, 2017, 15, 10029-10036.	2.8	30
31	Click Modification of RNA at Adenosine: Structure and Reactivity of 7-Ethynyl- and 7-Triazolyl-8-aza-7-deazaadenosine in RNA. ACS Chemical Biology, 2014, 9, 1780-1787.	3.4	29
32	Adenosine Deaminases That Act on RNA (ADARs). The Enzymes, 2017, 41, 215-268.	1.7	29
33	Synthesis and evaluation of an alkyne-modified ATP analog for enzymatic incorporation into RNA. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1799-1802.	2.2	28
34	A Bump-Hole Approach for Directed RNA Editing. Cell Chemical Biology, 2019, 26, 269-277.e5.	5.2	28
35	Matching Active Site and Substrate Structures for an RNA Editing Reaction. Journal of the American Chemical Society, 2009, 131, 11882-11891.	13.7	27
36	Probing RNA recognition by human ADAR2 using a high-throughput mutagenesis method. Nucleic Acids Research, 2016, 44, 9872-9880.	14.5	27

#	Article	IF	CITATIONS
37	High-Throughput Screening for Functional Adenosine to Inosine RNA Editing Systems. ACS Chemical Biology, 2006, 1, 761-765.	3.4	24
38	Nucleoside analog studies indicate mechanistic differences between RNA-editing adenosine deaminases. Nucleic Acids Research, 2012, 40, 9825-9835.	14.5	23
39	A Phenotypic Screen for Functional Mutants of Human Adenosine Deaminase Acting on RNA 1. ACS Chemical Biology, 2015, 10, 2512-2519.	3.4	23
40	Short Interfering RNA Guide Strand Modifiers from Computational Screening. Journal of the American Chemical Society, 2013, 135, 17069-17077.	13.7	22
41	Effects of Aicardi-Goutières syndrome mutations predicted from ADAR-RNA structures. RNA Biology, 2017, 14, 164-170.	3.1	22
42	Minor-Groove-Modulating Adenosine Replacements Control Protein Binding and RNAi Activity in siRNAs. ACS Chemical Biology, 2010, 5, 1115-1124.	3.4	21
43	Demethylation of 6-O-Methylinosine by an RNA-Editing Adenosine Deaminase. Journal of the American Chemical Society, 2000, 122, 11537-11538.	13.7	20
44	Base Modification Strategies to Modulate Immune Stimulation by an siRNA. ChemBioChem, 2015, 16, 262-267.	2.6	20
45	Structural basis for eukaryotic mRNA modification. Current Opinion in Structural Biology, 2018, 53, 59-68.	5.7	18
46	Regulation of RNA editing by intracellular acidification. Nucleic Acids Research, 2021, 49, 4020-4036.	14.5	18
47	RNA binding candidates for human ADAR3 from substrates of a gain of function mutant expressed in neuronal cells. Nucleic Acids Research, 2019, 47, 10801-10814.	14.5	17
48	Probing Adenosine-to-Inosine Editing Reactions Using RNA-Containing Nucleoside Analogs. Methods in Enzymology, 2007, 424, 369-386.	1.0	16
49	7-Substituted 8-aza-7-deazaadenosines for modification of the siRNA major groove. Organic and Biomolecular Chemistry, 2012, 10, 6491.	2.8	15
50	C6-Substituted Analogues of 8-Azanebularine:  Probes of an RNA-Editing Enzyme Active Site. Organic Letters, 2006, 8, 3753-3756.	4.6	14
51	TLR8 activation and inhibition by guanosine analogs in RNA: Importance of functional groups and chain length. Bioorganic and Medicinal Chemistry, 2018, 26, 77-83.	3.0	13
52	Chemical Profiling of Aâ€ŧoâ€I RNA Editing Using a Click ompatible Phenylacrylamide. Chemistry - A European Journal, 2020, 26, 9874-9878.	3.3	13
53	Rational Design of RNA Editing Guide Strands: Cytidine Analogs at the Orphan Position. Journal of the American Chemical Society, 2021, 143, 6865-6876.	13.7	12
54	Guide Strand 3′â€End Modifications Regulate siRNA Specificity. ChemBioChem, 2016, 17, 2340-2345.	2.6	10

#	Article	IF	CITATIONS
55	Versatile 3′ Functionalization of CRISPR Single Guide RNA. ChemBioChem, 2020, 21, 1633-1640.	2.6	10
56	Site-specific modification and RNA crosslinking of the RNA-binding domain of PKR. Nucleic Acids Research, 2000, 28, 1899-1905.	14.5	9
57	High-throughput mutagenesis reveals unique structural features of human ADAR1. Nature Communications, 2020, 11, 5130.	12.8	8
58	The Chemistry and Biology of RNA editing by Adenosine Deaminases. Nucleic Acids Symposium Series, 2007, 51, 83-84.	0.3	7
59	Synthesis of native-like crosslinked duplex RNA and study of its properties. Bioorganic and Medicinal Chemistry, 2017, 25, 2191-2199.	3.0	7
60	Covalent hydration energies for purine analogs by quantum chemical methods. Journal of Computational Chemistry, 2010, 31, 721-725.	3.3	6
61	Covalent stabilization of a small molecule–RNA complex. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5002-5005.	2.2	6
62	Nucleoside analogs in the study of the epitranscriptome. Methods, 2019, 156, 46-52.	3.8	6
63	Duplex RNA-Binding Enzymes: Headliners from Neurobiology, Virology, and Development. ChemBioChem, 2005, 6, 257-266.	2.6	4
64	Ester modification at the $3\hat{a}\in^2$ end of anti-microRNA oligonucleotides increases potency of microRNA inhibition. Bioorganic and Medicinal Chemistry, 2021, 29, 115894.	3.0	3
65	Tethering in RNA: An RNA-Binding Fragment Discovery Tool. Molecules, 2015, 20, 4148-4161.	3.8	1
66	Oligonucleotide-directed RNA editing in primates. Molecular Therapy, 2022, , .	8.2	1