And Frank Alderuccio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9504778/publications.pdf Version: 2024-02-01

AND FRANK ALDERLICCIO

#	Article	IF	CITATIONS
1	B-cells expressing NgR1 and NgR3 are localized to EAE-induced inflammatory infiltrates and are stimulated by BAFF. Scientific Reports, 2021, 11, 2890.	3.3	11
2	Tetraspanin CD53 Promotes Lymphocyte Recirculation by Stabilizing L-Selectin Surface Expression. IScience, 2020, 23, 101104.	4.1	19
3	Activated CD8+ T Cells Cause Long-Term Neurological Impairment after Traumatic Brain Injury in Mice. Cell Reports, 2019, 29, 1178-1191.e6.	6.4	76
4	The Influence of Differentially Expressed Tissue-Type Plasminogen Activator in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis. PLoS ONE, 2016, 11, e0158653.	2.5	7
5	Efficient conditional gene expression following transplantation of retrovirally transduced bone marrow stem cells. Journal of Immunological Methods, 2015, 416, 183-188.	1.4	2
6	Gene Therapy Delivery of Myelin Oligodendrocyte Glycoprotein (MOG) via Hematopoietic Stem Cell Transfer Induces MOG-Specific B Cell Deletion. Journal of Immunology, 2014, 192, 2593-2601.	0.8	9
7	Thymic Gene Transfer of Myelin Oligodendrocyte Glycoprotein Ameliorates the Onset but Not the Progression of Autoimmune Demyelination. Molecular Therapy, 2012, 20, 1349-1359.	8.2	8
8	Tackling autoimmunity with gene therapy. Chimerism, 2012, 3, 65-68.	0.7	2
9	Non-myeloablative transplantation of bone marrow expressing self-antigen establishes peripheral tolerance and completely prevents autoimmunity in mice. Gene Therapy, 2012, 19, 1075-1084.	4.5	5
10	Cutting Edge Issues in Autoimmune Gastritis. Clinical Reviews in Allergy and Immunology, 2012, 42, 269-278.	6.5	85
11	Nonmyeloablative Conditioning Generates Autoantigen-Encoding Bone Marrow That Prevents and Cures an Experimental Autoimmune Disease. American Journal of Transplantation, 2012, 12, 2062-2071.	4.7	16
12	Hematopoietic Stem Cell Gene Therapy as a Treatment for Autoimmune Diseases. Molecular Pharmaceutics, 2011, 8, 1488-1494.	4.6	16
13	Editorial [Hot Topic: Stem Cell Based Therapy for Autoimmunity (Guest Editor: Frank Alderuccio)]. Current Stem Cell Research and Therapy, 2011, 6, 1-2.	1.3	1
14	Transplantation of Genetically Modified Haematopoietic Stem Cells to Induce Antigen-Specific Tolerance as a Cure for Autoimmune Diseases. Current Stem Cell Research and Therapy, 2011, 6, 44-49.	1.3	1
15	Transplantation of retrovirally transduced bone marrow prevents autoimmune disease in aged mice by peripheral tolerance mechanisms. Autoimmunity, 2011, 44, 384-393.	2.6	10
16	Targeting MOG expression to dendritic cells delays onset of experimental autoimmune disease. Autoimmunity, 2011, 44, 177-187.	2.6	15
17	Transplantation of autoimmune regulatorâ€encoding bone marrow cells delays the onset of experimental autoimmune encephalomyelitis. European Journal of Immunology, 2010, 40, 3499-3509.	2.9	19
18	A molecular Trojan horse: hijacking the bone marrow to treat autoimmune diseases. Discovery Medicine, 2010, 9, 512-8.	0.5	1

#	Article	IF	CITATIONS
19	Gene therapy and bone marrow stem-cell transfer to treat autoimmune disease. Trends in Molecular Medicine, 2009, 15, 344-351.	6.7	19
20	Methylprednisolone induces reversible clinical and pathological remission and loss of lymphocyte reactivity to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. Autoimmunity, 2008, 41, 405-413.	2.6	30
21	GM-CSF-induced autoimmune gastritis in interferon α receptor deficient mice. Journal of Autoimmunity, 2008, 31, 274-280.	6.5	2
22	Autoimmune Gastritis. , 2008, , 315-321.		1
23	Tweaking the immune system: Gene therapy-assisted autologous haematopoietic stem cell transplantation as a treatment for autoimmune disease. Autoimmunity, 2008, 41, 679-685.	2.6	7
24	Transplantation of Bone Marrow Transduced to Express Self-Antigen Establishes Deletional Tolerance and Permanently Remits Autoimmune Disease. Journal of Immunology, 2008, 181, 7571-7580.	0.8	51
25	PARIETAL CELL AND INTRINSIC FACTOR AUTOANTIBODIES. , 2007, , 479-486.		4
26	Mechanisms and applications of stem cell gene therapy in autoimmunity. Drug Discovery Today Disease Mechanisms, 2006, 3, 219-223.	0.8	4
27	Transplantation of bone marrow genetically engineered to express proinsulin II protects against autoimmune insulitis in NOD mice. Journal of Gene Medicine, 2006, 8, 1281-1290.	2.8	33
28	Gene Therapy Strategies Towards Immune Tolerance to Treat the Autoimmune Diseases. Current Gene Therapy, 2006, 6, 45-58.	2.0	27
29	Gastritis and Pernicious Anemia. , 2006, , 527-546.		7
30	Haematopoietic Stem Cell Gene Therapy to Treat Autoimmune Disease. Current Stem Cell Research and Therapy, 2006, 1, 279-287.	1.3	11
31	Reversing the Autoimmune Condition: Experience with Experimental Autoimmune Gastritis. International Reviews of Immunology, 2005, 24, 135-155.	3.3	2
32	Mechanisms of Gastric Mucosal Cell Loss In Autoimmune Gastritis. International Reviews of Immunology, 2005, 24, 123-134.	3.3	7
33	Pernicious Anaemia. Autoimmunity, 2004, 37, 357-361.	2.6	58
34	Induction of tolerance to self-antigens using genetically modified bone marrow cells. Expert Opinion on Biological Therapy, 2004, 4, 1007-1014.	3.1	3
35	Tumor necrosis factor alpha is not implicated in the genesis of experimental autoimmune gastritis. Journal of Autoimmunity, 2004, 22, 1-11.	6.5	11
36	Stem cells engineered to express self-antigen to treat autoimmunity. Trends in Immunology, 2003, 24, 176-180.	6.8	25

#	Article	IF	CITATIONS
37	Chemokine receptor CCR5 is not required for development of experimental autoimmune gastritis. Clinical Immunology, 2003, 109, 238-247.	3.2	10
38	Tolerance established in autoimmune disease by mating or bone marrow transplantation that target autoantigen to thymus. International Immunology, 2003, 15, 269-277.	4.0	22
39	Autoantibodies in Neuropsychiatric Lupus. Autoimmunity, 2002, 35, 79-86.	2.6	100
40	Organ-specific Autoimmunity in Granulocyte Macrophage-colony Stimulating Factor (GM-CSF) Deficient Mice. Autoimmunity, 2002, 35, 67-73.	2.6	14
41	Animal Models of Human Disease: Experimental Autoimmune Gastritis—A Model for Autoimmune Gastritis and Pernicious Anemia. Clinical Immunology, 2002, 102, 48-58.	3.2	56
42	Fas/CD95 is required for gastric mucosal damage in autoimmune gastritis. Gastroenterology, 2002, 123, 780-789.	1.3	33
43	The Gastric H/K ATPase in the Pathogenesis of Autoimmune Gastritis. , 2002, , 107-114.		1
44	Defining T Cell Receptors which Recognise the Immunodominant Epitope of the Gastric Autoantigen, the H/K ATPase β-Subunit. Autoimmunity, 2001, 33, 1-14.	2.6	7
45	Local Transgenic Expression of Granulocyte Macrophage-Colony Stimulating Factor Initiates Autoimmunity. Journal of Immunology, 2001, 166, 2090-2099.	0.8	71
46	The causative H+/K+ ATPase antigen in the pathogenesis of autoimmune gastritis. Trends in Immunology, 2000, 21, 348-354.	7.5	86
47	Tolerance and autoimmunity to a gastritogenic peptide in TCR transgenic mice. International Immunology, 2000, 12, 343-352.	4.0	39
48	Spontaneous Autoimmune Gastritis in C3H/He Mice. American Journal of Pathology, 1998, 153, 1311-1318.	3.8	24
49	Expression of the Gastric H/K-ATPase α-Subunit in the Thymus may Explain the Dominant Role of the β-Subunit in the Pathogenesis of Autoimmune Gastritis. Autoimmunity, 1997, 25, 167-175.	2.6	53
50	A Novel Method for Isolating Mononuclear Cells from the Stomachs of Mice with Experimental Autoimmune Gastritis. Autoimmunity, 1995, 21, 215-221.	2.6	38
51	Organ-specific autoimmunity induced by adult thymectomy and cyclophosphamide-induced lymphopenia. European Journal of Immunology, 1995, 25, 238-244.	2.9	78
52	Expression of a gastric autoantigen in pancreatic islets results in non-destructive insulitis after neonatal thymectomy. European Journal of Immunology, 1995, 25, 2686-2694.	2.9	22
53	The Gastric H/K-ATPase: The Principle Target in Autoimmune Gastritis. , 1994, , 119-126.		1
54	α and β Subunits of the Gastric H/K -ATPase Are Concordantly Targeted by Parietal Cell Autoantibodies Associated with Autoimmune Gastritis. Autoimmunity, 1993, 16, 289-295.	2.6	54