
Claudio Casola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9504707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ecoresponsive Genome of <i>Daphnia pulex</i> . Science, 2011, 331, 555-561.	12.6	1,086
2	Comparative and demographic analysis of orang-utan genomes. Nature, 2011, 469, 529-533.	27.8	541
3	Transposase-Derived Transcription Factors Regulate Light Signaling in <i>Arabidopsis</i> . Science, 2007, 318, 1302-1305.	12.6	439
4	Sequencing of <i>Culex quinquefasciatus</i> Establishes a Platform for Mosquito Comparative Genomics. Science, 2010, 330, 86-88.	12.6	424
5	Gibbon genome and the fast karyotype evolution of small apes. Nature, 2014, 513, 195-201.	27.8	320
6	The common marmoset genome provides insight into primate biology and evolution. Nature Genetics, 2014, 46, 850-857.	21.4	225
7	Adaptive evolution of young gene duplicates in mammals. Genome Research, 2009, 19, 859-867.	5.5	176
8	Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila. Genome Biology, 2007, 8, R11.	9.6	144
9	Convergent Domestication of pogo-like Transposases into Centromere-Binding Proteins in Fission Yeast and Mammals. Molecular Biology and Evolution, 2007, 25, 29-41.	8.9	112
10	The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae. G3: Genes, Genomes, Genetics, 2017, 7, 3157-3167.	1.8	103
11	Convergent Evolution of Endometrial Prolactin Expression in Primates, Mice, and Elephants Through the Independent Recruitment of Transposable Elements. Molecular Biology and Evolution, 2012, 29, 239-247.	8.9	100
12	Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence. Gene, 2009, 447, 1-11.	2.2	90
13	The Genomic Impact of Gene Retrocopies: What Have We Learned from Comparative Genomics, Population Genomics, and Transcriptomic Analyses?. Genome Biology and Evolution, 2017, 9, 1351-1373.	2.5	77
14	PIF-like Transposons are Common in Drosophila and Have Been Repeatedly Domesticated to Generate New Host Genes. Molecular Biology and Evolution, 2007, 24, 1872-1888.	8.9	57
15	Gametogenesis of intergroup hybrids of hemiclonal frogs. Genetical Research, 2007, 89, 39-45.	0.9	49
16	LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes. Genome Biology and Evolution, 2017, 9, 3449-3462.	2.5	45
17	Minimal Effect of Ectopic Gene Conversion Among Recent Duplicates in Four Mammalian Genomes. Genetics, 2009, 182, 615-622.	2.9	43
18	From de novo to â€~de nono': The majority of novel protein coding genes identified with phylostratigraphy are old genes or recent duplicates. Genome Biology and Evolution, 2018, 10, 2906-2918.	2.5	40

CLAUDIO CASOLA

#	Article	IF	CITATIONS
19	Evolutionary origin of regulatory regions of retrogenes in Drosophila. BMC Genomics, 2008, 9, 241.	2.8	37
20	Gene Conversion Among Paralogs Results in Moderate False Detection of Positive Selection Using Likelihood Methods. Journal of Molecular Evolution, 2009, 68, 679-687.	1.8	34
21	An Ancient Trans-Kingdom Horizontal Transfer of <i>Penelope</i> -like Retroelements from Arthropods to Conifers. Genome Biology and Evolution, 2016, 8, evw076.	2.5	34
22	Interlocus gene conversion events introduce deleterious mutations into at least 1% of human genes associated with inherited disease. Genome Research, 2012, 22, 429-435.	5.5	30
23	Nonallelic Gene Conversion in the Genus Drosophila. Genetics, 2010, 185, 95-103.	2.9	29
24	Very Low Rate of Gene Conversion in the Yeast Genome. Molecular Biology and Evolution, 2012, 29, 3817-3826.	8.9	25
25	Chromosome number evolves at equal rates in holocentric and monocentric clades. PLoS Genetics, 2020, 16, e1009076.	3.5	22
26	Differential expression of two vasa/PL10-related genes during gametogenesis in the special model system Rana. Development Genes and Evolution, 2007, 217, 395-402.	0.9	16
27	Pinaceae show elevated rates of gene turnover that are robust to incomplete gene annotation. Plant Journal, 2018, 95, 862-876.	5.7	12
28	Molecular investigations in western palearctic water frogs. Italian Journal of Zoology, 2004, 71, 17-23.	0.6	9
29	A hAT-related family of interspersed repetitive elements in genomes of western Palaearctic water frogs. Journal of Zoological Systematics and Evolutionary Research, 2004, 42, 234-244.	1.4	6
30	Quality of regulatory elements in Drosophila retrogenes. Genomics, 2009, 93, 83-89.	2.9	6
31	SECNVs: A Simulator of Copy Number Variants and Whole-Exome Sequences From Reference Genomes. Frontiers in Genetics, 2020, 11, 82.	2.3	6
32	<i>TP53</i> Gene and Cancer Resistance in Elephants. JAMA - Journal of the American Medical Association, 2016, 315, 1788.	7.4	5
33	Isolation and expression of <i>RlYB2</i> , a germ cellâ€specific <i>Yâ€box</i> gene in <i>Rana</i> . Italian Journal of Zoology, 2008, 75, 1-9.	0.6	4
34	<i>Daz</i> ―and <i>Pumilio</i> â€like genes are asymmetrically localized in <i>Pelophylax</i> (<i>Rana</i>) oocytes and are expressed during early spermatogenesis. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 330-338.	1.3	4
35	Extensive Variation in Drought-Induced Gene Expression Changes Between Loblolly Pine Genotypes. Frontiers in Genetics, 2021, 12, 661440.	2.3	3
36	Beyond RuBisCO: convergent molecular evolution of multiple chloroplast genes in C ₄ plants. PeerJ, 2022, 10, e12791.	2.0	2

#	Article	IF	CITATIONS
37	The nonrandom evolution of gene families. American Journal of Botany, 2019, 106, 14-17.	1.7	1
38	Resequencing of massive pine genomes helps to unlock the genetic underpinning of quantitative traits in conifer trees. New Phytologist, 2019, 221, 1669-1671.	7.3	0
39	Report on the Thirty-Fifth Southern Forest Tree Improvement Conference (SFTIC 2019). Tree Genetics and Genomes, 2020, 16, 1.	1.6	0