Simon P Graham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9504361/publications.pdf

Version: 2024-02-01

91 papers 2,844 citations

32 h-index 214800 47 g-index

96 all docs 96 docs citations

96 times ranked 3323 citing authors

#	Article	IF	CITATIONS
1	Analyses of the Impact of Immunosuppressive Cytokines on Porcine Macrophage Responses and Susceptibility to Infection to African Swine Fever Viruses. Pathogens, 2022, 11, 166.	2.8	8
2	Evaluation of electropolymerized molecularly imprinted polymers (E-MIPs) on disposable electrodes for detection of SARS-CoV-2 in saliva. Analytica Chimica Acta, 2022, 1206, 339777.	5.4	42
3	The pig as an amplifying host for new and emerging zoonotic viruses. One Health, 2022, 14, 100384.	3.4	19
4	Cellular and Humoral Immune Responses after Immunisation with Low Virulent African Swine Fever Virus in the Large White Inbred Babraham Line and Outbred Domestic Pigs. Viruses, 2022, 14, 1487.	3.3	7
5	Depletion of CD8 ⁺ T cells from vaccinated goats does not affect protection from challenge with wildâ€type peste des petits ruminants virus. Transboundary and Emerging Diseases, 2021, 68, 3320-3334.	3.0	5
6	Micro-fusion inhibition tests: quantifying antibody neutralization of virus-mediated cell–cell fusion. Journal of General Virology, 2021, 102, .	2.9	21
7	A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses. Nature Communications, 2021, 12, 542.	12.8	200
8	Thermal limits for flight activity of field-collected Culicoides in the United Kingdom defined under laboratory conditions. Parasites and Vectors, 2021, 14, 55.	2.5	8
9	Isolation of Porcine Reproductive and Respiratory Syndrome Virus GP5-Specific, Neutralizing Monoclonal Antibodies From Hyperimmune Sows. Frontiers in Immunology, 2021, 12, 638493.	4.8	10
10	Protective porcine influenza virus-specific monoclonal antibodies recognize similar haemagglutinin epitopes as humans. PLoS Pathogens, 2021, 17, e1009330.	4.7	13
11	Comparative Phenotypic and Functional Analyses of the Effects of IL-10 or TGF-Î ² on Porcine Macrophages. Animals, 2021, 11, 1098.	2.3	19
12	Targeting Toll-Like Receptor 2: Polarization of Porcine Macrophages by a Mycoplasma-Derived Pam2cys Lipopeptide. Vaccines, 2021, 9, 692.	4.4	8
13	Activation of Dendritic Cells in Tonsils Is Associated with CD8 T Cell Responses following Vaccination with Live Attenuated Classical Swine Fever Virus. International Journal of Molecular Sciences, 2021, 22, 8795.	4.1	2
14	Antiviral Efficacy of Metal and Metal Oxide Nanoparticles against the Porcine Reproductive and Respiratory Syndrome Virus. Nanomaterials, 2021, 11, 2120.	4.1	3
15	Combinatorial F-G Immunogens as Nipah and Respiratory Syncytial Virus Vaccine Candidates. Viruses, 2021, 13, 1942.	3.3	10
16	Changes in the Nasal Microbiota of Pigs Following Single or Co-Infection with Porcine Reproductive and Respiratory Syndrome and Swine Influenza A Viruses. Pathogens, 2021, 10, 1225.	2.8	6
17	Simultaneous Infection With Porcine Reproductive and Respiratory Syndrome and Influenza Viruses Abrogates Clinical Protection Induced by Live Attenuated Porcine Reproductive and Respiratory Syndrome Vaccination. Frontiers in Immunology, 2021, 12, 758368.	4.8	11
18	Bovine Pestivirus Heterogeneity and Its Potential Impact on Vaccination and Diagnosis. Viruses, 2020, 12, 1134.	3.3	25

#	Article	IF	CITATIONS
19	Establishment of a Pig Influenza Challenge Model for Evaluation of Monoclonal Antibody Delivery Platforms. Journal of Immunology, 2020, 205, 648-660.	0.8	22
20	Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. Npj Vaccines, 2020, 5, 69.	6.0	121
21	Comparison of Macrophage Responses to African Swine Fever Viruses Reveals that the NH/P68 Strain is Associated with Enhanced Sensitivity to Type I IFN and Cytokine Responses from Classically Activated Macrophages. Pathogens, 2020, 9, 209.	2.8	29
22	Bovine Herpesvirus-4-Vectored Delivery of Nipah Virus Glycoproteins Enhances T Cell Immunogenicity in Pigs. Vaccines, 2020, 8, 115.	4.4	27
23	Head Start Immunity: Characterizing the Early Protection of C Strain Vaccine Against Subsequent Classical Swine Fever Virus Infection. Frontiers in Immunology, 2019, 10, 1584.	4.8	9
24	Porcine Dendritic Cells and Viruses: An Update. Viruses, 2019, 11, 445.	3.3	20
25	Evaluation of Molecularly Imprinted Polymers as Synthetic Virus Neutralizing Antibody Mimics. Frontiers in Bioengineering and Biotechnology, 2019, 7, 115.	4.1	24
26	Establishment of Systems to Enable Isolation of Porcine Monoclonal Antibodies Broadly Neutralizing the Porcine Reproductive and Respiratory Syndrome Virus. Frontiers in Immunology, 2019, 10, 572.	4.8	6
27	Vaccine Development for Nipah Virus Infection in Pigs. Frontiers in Veterinary Science, 2019, 6, 16.	2.2	19
28	The major histocompatibility complex homozygous inbred Babraham pig as a resource for veterinary and translational medicine. Hla, 2018, 92, 40-43.	0.6	33
29	Infection of monocytes with European porcine reproductive and respiratory syndrome virus (PRRSV-1) strain Lena is significantly enhanced by dexamethasone and IL-10. Virology, 2018, 517, 199-207.	2.4	18
30	Recent advances in veterinary applications of structural vaccinology. Current Opinion in Virology, 2018, 29, 33-38.	5.4	4
31	Interaction of porcine monocyte-derived dendritic cells with African swine fever viruses of diverse virulence. Veterinary Microbiology, 2018, 216, 190-197.	1.9	41
32	Comparison of the Immunogenicities and Cross-Lineage Efficacies of Live Attenuated Peste des Petits Ruminants Virus Vaccines PPRV/Nigeria/75/1 and PPRV/Sungri/96. Journal of Virology, 2018, 92, .	3.4	41
33	Characterization of the Myeloid Cell Populations' Resident in the Porcine Palatine Tonsil. Frontiers in Immunology, 2018, 9, 1800.	4.8	23
34	Establishment of a Bovine Viral Diarrhea Virus Type 2 Intranasal Challenge Model for Assessing Vaccine Efficacy. Frontiers in Veterinary Science, 2018, 5, 24.	2.2	3
35	Comparative analysis of adaptive immune responses following experimental infections of cattle with bovine viral diarrhoea virus-1 and an Asiatic atypical ruminant pestivirus. Vaccine, 2018, 36, 4494-4500.	3.8	6
36	CD1â^ and CD1+ porcine blood dendritic cells are enriched for the orthologues of the two major mammalian conventional subsets. Scientific Reports, 2017, 7, 40942.	3.3	37

#	Article	IF	CITATIONS
37	Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets. Veterinary Microbiology, 2017, 198, 88-98.	1.9	56
38	Evaluation of hydrophobic chitosan-based particulate formulations of porcine reproductive and respiratory syndrome virus vaccine candidate T cell antigens. Veterinary Microbiology, 2017, 209, 66-74.	1.9	14
39	Porcine reproductive and respiratory syndrome type 1 viruses induce hypoplasia of erythroid cells and myeloid cell hyperplasia in the bone marrow of experimentally infected piglets independently of the viral load and virulence. Veterinary Microbiology, 2017, 201, 126-135.	1.9	10
40	Comparative phenotypic and functional analyses of the effects of autologous plasma and recombinant human macrophage-colony stimulating factor (M-CSF) on porcine monocyte to macrophage differentiation. Veterinary Immunology and Immunopathology, 2017, 187, 80-88.	1.2	14
41	Design and evaluation of the immunogenicity and efficacy of a biomimetic particulate formulation of viral antigens. Scientific Reports, 2017, 7, 13743.	3 . 3	24
42	Pathology and Virus Distribution in the Lung and Lymphoid Tissues of Pigs Experimentally Inoculated with Three Distinct Type 1 PRRS Virus Isolates of Varying Pathogenicity. Transboundary and Emerging Diseases, 2016, 63, 285-295.	3.0	58
43	The Non-structural Protein 5 and Matrix Protein Are Antigenic Targets of T Cell Immunity to Genotype 1 Porcine Reproductive and Respiratory Syndrome Viruses. Frontiers in Immunology, 2016, 7, 40.	4.8	22
44	Establishing Porcine Monocyte-Derived Macrophage and Dendritic Cell Systems for Studying the Interaction with PRRSV-1. Frontiers in Microbiology, 2016, 7, 832.	3 . 5	53
45	Challenges in Veterinary Vaccine Development and Immunization. Methods in Molecular Biology, 2016, 1404, 3-35.	0.9	20
46	<scp>CD Scp>8 Tâ€cell responses against the immunodominant <i>Theileria parva peptide Tp2_{49â€"59 sub> are composed of two distinct populations specific for overlapping 11â€mer and 10â€mer epitopes. Immunology, 2016, 149, 172-185.}</i></scp>	4.4	9
47	Limited genetic and antigenic diversity within parasite isolates used in a live vaccine against Theileria parva. International Journal for Parasitology, 2016, 46, 495-506.	3.1	41
48	Thymic depletion of lymphocytes is associated with the virulence of PRRSV-1 strains. Veterinary Microbiology, 2016, 188, 47-58.	1.9	17
49	Host–pathogen interactions during porcine reproductive and respiratory syndrome virus 1 infection of piglets. Virus Research, 2015, 202, 135-143.	2.2	34
50	A comparative study of the local cytokine response in the lungs of pigs experimentally infected with different PRRSV-1 strains: Upregulation of IL- $11\pm$ in highly pathogenic strain induced lesions. Veterinary Immunology and Immunopathology, 2015, 164, 137-147.	1.2	34
51	Comparative analysis of cytokine transcript profiles within mediastinal lymph node compartments of pigs after infection with porcine reproductive and respiratory syndrome genotype 1 strains differing in pathogenicity. Veterinary Research, 2015, 46, 34.	3.0	17
52	Assessment of the enhancement of PLGA nanoparticle uptake by dendritic cells through the addition of natural receptor ligands and monoclonal antibody. Vaccine, 2015, 33, 6588-6595.	3.8	17
53	Early Responses of Natural Killer Cells in Pigs Experimentally Infected with 2009 Pandemic H1N1 Influenza A Virus. PLoS ONE, 2014, 9, e100619.	2.5	16
54	Partial Activation of Natural Killer and $\hat{I}^3\hat{I}$ T Cells by Classical Swine Fever Viruses Is Associated with Type I Interferon Elicited from Plasmacytoid Dendritic Cells. Vaccine Journal, 2014, 21, 1410-1420.	3.1	16

#	Article	IF	Citations
55	Proteome-wide screening of the European porcine reproductive and respiratory syndrome virus reveals a broad range of T cell antigen reactivity. Vaccine, 2014, 32, 6828-6837.	3.8	35
56	Increased pathogenicity of European porcine reproductive and respiratory syndrome virus is associated with enhanced adaptive responses and viral clearance. Veterinary Microbiology, 2013, 163, 13-22.	1.9	96
57	Enhanced infectivity of H5N1 highly pathogenic avian influenza (HPAI) virus in pig ex vivo respiratory tract organ cultures following adaptation by in vitro passage. Virus Research, 2013, 178, 383-391.	2.2	5
58	Comparative analysis of immune responses following experimental infection of pigs with European porcine reproductive and respiratory syndrome virus strains of differing virulence. Veterinary Microbiology, 2013, 163, 1-12.	1.9	69
59	Assessment of the Phenotype and Functionality of Porcine CD8 T Cell Responses following Vaccination with Live Attenuated Classical Swine Fever Virus (CSFV) and Virulent CSFV Challenge. Vaccine Journal, 2013, 20, 1604-1616.	3.1	56
60	The bovine CD1D gene has an unusual gene structure and is expressed but cannot present \hat{l}_{\pm} -galactosylceramide with a C26 fatty acid. International Immunology, 2013, 25, 91-98.	4.0	16
61	Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity. Scientific Reports, 2013, 3, 2478.	3.3	37
62	Proteome-Wide Screening Reveals Immunodominance in the CD8 T Cell Response against Classical Swine Fever Virus with Antigen-Specificity Dependent on MHC Class I Haplotype Expression. PLoS ONE, 2013, 8, e84246.	2.5	28
63	Characterisation of vaccine-induced, broadly cross-reactive IFN- \hat{I}^3 secreting T cell responses that correlate with rapid protection against classical swine fever virus. Vaccine, 2012, 30, 2742-2748.	3.8	48
64	Challenge of Pigs with Classical Swine Fever Viruses after C-Strain Vaccination Reveals Remarkably Rapid Protection and Insights into Early Immunity. PLoS ONE, 2012, 7, e29310.	2.5	89
65	Treatment of cattle with DNA-encoded Flt3L and GM-CSF prior to immunization with Theileria parva candidate vaccine antigens induces CD4 and CD8 T cell IFN-1³ responses but not CTL responses. Veterinary Immunology and Immunopathology, 2011, 140, 244-251.	1.2	12
66	Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity. PLoS ONE, 2011, 6, e19015.	2.5	62
67	Extensive Polymorphism and Evidence of Immune Selection in a Highly Dominant Antigen Recognized by Bovine CD8 T Cells Specific for Theileria annulata. Infection and Immunity, 2011, 79, 2059-2069.	2.2	53
68	Characterisation of experimental infections of domestic pigs with genotype 2.1 and 3.3 isolates of classical swine fever virus. Veterinary Microbiology, 2010, 142, 26-33.	1.9	41
69	Characterisation of virus-specific peripheral blood cell cytokine responses following vaccination or infection with classical swine fever viruses. Veterinary Microbiology, 2010, 142, 34-40.	1.9	26
70	MHC Class I Bound to an Immunodominant Theileria parva Epitope Demonstrates Unconventional Presentation to T Cell Receptors. PLoS Pathogens, 2010, 6, e1001149.	4.7	48
71	CD8 ⁺ Tâ€cell responses to <i>Theileria parva</i> are preferentially directed to a single dominant antigen: Implications for parasite strainâ€specific immunity. European Journal of Immunology, 2009, 39, 2459-2469.	2.9	66
72	Fusion of a cell penetrating peptide from HIV-1 TAT to the Theileria parva antigen Tp2 enhances the stimulation of bovine CD8+ T cell responses. Veterinary Immunology and Immunopathology, 2009, 130, 107-113.	1.2	6

#	Article	lF	CITATIONS
73	Theileria. , 2009, , 191-231.		10
74	Evaluation of the recognition of Theileria parva vaccine candidate antigens by cytotoxic T lymphocytes from Zebu cattle. Veterinary Immunology and Immunopathology, 2008, 121, 216-221.	1.2	14
75	Characterization of the Fine Specificity of Bovine CD8 T-Cell Responses to Defined Antigens from the Protozoan Parasite <i>Theileria parva </i> Infection and Immunity, 2008, 76, 685-694.	2.2	72
76	Immunostimulatory CpG oligodeoxynucleotides enhance the induction of bovine CD4+ cytotoxic T-lymphocyte responses against the polymorphic immunodominant molecule of the protozoan parasite Theileria parva. Veterinary Immunology and Immunopathology, 2007, 115, 383-389.	1.2	9
77	A novel strategy for the identification of antigens that are recognised by bovine MHC class I restricted cytotoxic T cells in a protozoan infection using reverse vaccinology. Immunome Research, 2007, 3, 2.	0.1	31
78	Theileria parva candidate vaccine antigens recognized by immune bovine cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3286-3291.	7.1	129
79	In a bovine model of onchocerciasis, protective immunity exists naturally, is absent in drug-cured hosts, and is induced by vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5971-5976.	7.1	47
80	Analysis of the transcriptome of the protozoan Theileria parva using MPSS reveals that the majority of genes are transcriptionally active in the schizont stage. Nucleic Acids Research, 2005, 33, 5503-5511.	14.5	50
81	Characterization of efferent lymph cells and their function following immunization of cattle with an allogenic Theileria annulata infected cell line. Veterinary Immunology and Immunopathology, 2003, 93, 39-49.	1.2	7
82	Is  timing' important for cytokine polarization?. Trends in Immunology, 2002, 23, 246-249.	6.8	36
83	Proinflammatory cytokine expression by Theileria annulata infected cell lines correlates with the pathology they cause in vivo. Vaccine, 2001, 19, 2932-2944.	3.8	41
84	Transient transfection of Theileria annulata. Molecular and Biochemical Parasitology, 2001, 114, 53-61.	1.1	21
85	Down-Regulated Lymphoproliferation Coincides with Parasite Maturation and with the Collapse of Both Gamma Interferon and Interleukin-4 Responses in a Bovine Model of Onchocerciasis. Infection and Immunity, 2001, 69, 4313-4319.	2.2	38
86	Onchocerca volvulus: Comparative Analysis of Antibody Responses to Recombinant Antigens in Two Animal Models of Onchocerciasis. Experimental Parasitology, 2000, 94, 158-162.	1.2	16
87	Distinct Response Kinetics of Gamma Interferon and Interleukin-4 in Bovine Tuberculosis. Infection and Immunity, 2000, 68, 5393-5400.	2.2	54
88	Patterns of Onchocerca volvulus recombinant antigen recognition in a bovine model of onchocerciasis. Parasitology, 1999, 119, 603-612.	1.5	13
89	Cytokines and the protective host immune response to Chlamydia psittaci. Comparative Immunology, Microbiology and Infectious Diseases, 1998, 21, 15-26.	1.6	22
90	Recombinant ovine interferon gamma inhibits the multiplication of Chlamydia psittaci in ovine cells. Journal of Comparative Pathology, 1995, 112, 185-195.	0.4	39

#	Article	IF	CITATIONS
91	Fc-Mediated Functions of Porcine IgG Subclasses. Frontiers in Immunology, 0, 13, .	4.8	12