Peter Bankhead

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9504134/publications.pdf

Version: 2024-02-01

47 papers 6,772 citations

257357 24 h-index 289141 40 g-index

55 all docs 55 docs citations

55 times ranked 13088 citing authors

#	Article	IF	Citations
1	Development of a semiâ€automated method for tumour budding assessment in colorectal cancer and comparison with manual methods. Histopathology, 2022, 80, 485-500.	1.6	11
2	MITI minimum information guidelines for highly multiplexed tissue images. Nature Methods, 2022, 19, 262-267.	9.0	37
3	Developing image analysis methods for digital pathology. Journal of Pathology, 2022, 257, 391-402.	2.1	26
4	Recent Advances in Pathology: the 2022 Annual Review Issue of <i>The Journal of Pathology</i> Journal of Pathology, 2022, 257, 379-382.	2.1	2
5	Deep Learning–Based Segmentation and Quantification in Experimental Kidney Histopathology. Journal of the American Society of Nephrology: JASN, 2021, 32, 52-68.	3.0	93
6	Identifying mismatch repairâ€deficient colon cancer: nearâ€perfect concordance between immunohistochemistry and microsatellite instability testing in a large, populationâ€based series. Histopathology, 2021, 78, 401-413.	1.6	55
7	Using the R Package Spatstat to Assess Inhibitory Effects of Microregional Hypoxia on the Infiltration of Cancers of the Head and Neck Region by Cytotoxic T Lymphocytes. Cancers, 2021, 13, 1924.	1.7	5
8	Developing open-source software for bioimage analysis: opportunities and challenges. F1000Research, 2021, 10, 302.	0.8	20
9	ATU-10â€QuPath machine learning algorithm accurately identifies MLH1 deficient inflammatory bowel disease-associated colorectal cancer. , 2021, , .		O
10	Immune status is prognostic for poor survival in colorectal cancer patients and is associated with tumour hypoxia. British Journal of Cancer, 2020, 123, 1280-1288.	2.9	45
11	Pan-cancer image-based detection of clinically actionable genetic alterations. Nature Cancer, 2020, 1, 789-799.	5.7	343
12	Human Pancreatic Carcinoma-Associated Fibroblasts Promote Expression of Co-inhibitory Markers on CD4+ and CD8+ T-Cells. Frontiers in Immunology, 2019, 10, 847.	2.2	137
13	Digital and Computational Pathology for Biomarker Discovery. , 2019, , 87-105.		3
14	Validation of the systematic scoring of immunohistochemically stained tumour tissue microarrays using <i>QuPath</i> digital image analysis. Histopathology, 2018, 73, 327-338.	1.6	63
15	Integrated tumor identification and automated scoring minimizes pathologist involvement and provides new insights to key biomarkers in breast cancer. Laboratory Investigation, 2018, 98, 15-26.	1.7	81
16	Characterization of a murine mixed neuron-glia model and cellular responses to regulatory T cell-derived factors. Molecular Brain, 2018, 11, 25.	1.3	13
17	<i>Bcl-xL</i> as a poor prognostic biomarker and predictor of response to adjuvant chemotherapy specifically in <i>BRAF</i> -mutant stage II and III colon cancer. Oncotarget, 2018, 9, 13834-13847.	0.8	9
18	Topography of cancer-associated immune cells in human solid tumors. ELife, 2018, 7, .	2.8	206

#	Article	IF	CITATIONS
19	Embracing an integromic approach to tissue biomarker research in cancer: Perspectives and lessons learned. Briefings in Bioinformatics, 2017, 18, bbw044.	3.2	9
20	Early Commissural Diencephalic Neurons Control Habenular Axon Extension and Targeting. Current Biology, 2017, 27, 270-278.	1.8	13
21	Evaluation of PTGS2 Expression, PIK3CA Mutation, Aspirin Use and Colon Cancer Survival in a Population-Based Cohort Study. Clinical and Translational Gastroenterology, 2017, 8, e91.	1.3	56
22	Statin use, candidate mevalonate pathway biomarkers, and colon cancer survival in a population-based cohort study. British Journal of Cancer, 2017, 116, 1652-1659.	2.9	37
23	Regulatory T cells promote myelin regeneration in the central nervous system. Nature Neuroscience, 2017, 20, 674-680.	7.1	343
24	QuPath: Open source software for digital pathology image analysis. Scientific Reports, 2017, 7, 16878.	1.6	3,854
25	The RNA processing factors THRAP3 and BCLAF1 promote the DNA damage response through selective mRNA splicing and nuclear export. Nucleic Acids Research, 2017, 45, 12816-12833.	6.5	79
26	QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics. BMC Bioinformatics, 2016, 17, 198.	1.2	25
27	Automated tumor analysis for molecular profiling in lung cancer. Oncotarget, 2015, 6, 27938-27952.	0.8	43
28	Dengue Virus Inhibition of Autophagic Flux and Dependency of Viral Replication on Proteasomal Degradation of the Autophagy Receptor p62. Journal of Virology, 2015, 89, 8026-8041.	1.5	100
29	PICan: An integromics framework for dynamic cancer biomarker discovery. Molecular Oncology, 2015, 9, 1234-1240.	2.1	15
30	The Role of K ⁺ and Cl ^{\hat{a}^{\prime}} Channels in the Regulation of Retinal Arteriolar Tone and Blood Flow. , 2014, 55, 2157.		10
31	Acridine orange leukocyte fluorography in mice. Experimental Eye Research, 2014, 120, 15-19.	1.2	10
32	The role of soluble factors secreted from Treg cells in central nervous system myelination. Journal of Neuroimmunology, 2014, 275, 204.	1.1	0
33	Digital pathology and image analysis in tissue biomarker research. Methods, 2014, 70, 59-73.	1.9	162
34	Automated Detection and Measurement of Isolated Retinal Arterioles by a Combination of Edge Enhancement and Cost Analysis. PLoS ONE, 2014, 9, e91791.	1.1	10
35	Zebrafish Brain Development Monitored by Long-Term In Vivo Microscopy: A Comparison Between Laser Scanning Confocal and 2-Photon Microscopy. Neuromethods, 2014, , 163-188.	0.2	0
36	cudaMap: a GPU accelerated program for gene expression connectivity mapping. BMC Bioinformatics, 2013, 14, 305.	1.2	25

3

#	Article	IF	Citations
37	<scp><scp>Ca²⁺</scp></scp> sparks promote myogenic tone in retinal arterioles. British Journal of Pharmacology, 2013, 168, 1675-1686.	2.7	19
38	The ventral habenulae of zebrafish develop in prosomere 2 dependent on Tcf7l2 function. Neural Development, 2013, 8, 19.	1.1	39
39	<i>Xenopus</i> cytoplasmic linker–associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules. Molecular Biology of the Cell, 2013, 24, 1544-1558.	0.9	53
40	Feedback via Ca ²⁺ -Activated Ion Channels Modulates Endothelin 1 Signaling in Retinal Arteriolar Smooth Muscle., 2012, 53, 3059.		13
41	Dynamic Oscillation of Translation and Stress Granule Formation Mark the Cellular Response to Virus Infection. Cell Host and Microbe, 2012, 12, 71-85.	5.1	166
42	HIV-1 Nef Limits Communication between Linker of Activated T Cells and SLP-76 To Reduce Formation of SLP-76–Signaling Microclusters following TCR Stimulation. Journal of Immunology, 2012, 189, 1898-1910.	0.4	27
43	Translation suppression promotes stress granule formation and cell survival in response to cold shock. Molecular Biology of the Cell, 2012, 23, 3786-3800.	0.9	137
44	Fast Retinal Vessel Detection and Measurement Using Wavelets and Edge Location Refinement. PLoS ONE, 2012, 7, e32435.	1.1	272
45	Endothelin 1 Stimulates Ca ²⁺ -Sparks and Oscillations in Retinal Arteriolar Myocytes via IP ₃ R and RyR-Dependent Ca ²⁺ Release., 2011, 52, 3874.		18
46	Detecting Ca ²⁺ sparks on stationary and varying baselines. American Journal of Physiology - Cell Physiology, 2011, 301, C717-C728.	2.1	8
47	cAMP/PKA-Dependent Increases in Ca Sparks, Oscillations and SR Ca Stores in Retinal Arteriolar Myocytes after Exposure to Vasopressin. , 2010, 51, 1591.		9