Giovanni Bistoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9502820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Combined Spectroscopic and Computational Study on the Mechanism of Iron-Catalyzed Aminofunctionalization of Olefins Using Hydroxylamine Derived N–O Reagent as the "Amino―Source and "Oxidant― Journal of the American Chemical Society, 2022, 144, 2637-2656.	13.7	29
2	Open-Shell Variant of the London Dispersion-Corrected Hartree–Fock Method (HFLD) for the Quantification and Analysis of Noncovalent Interaction Energies. Journal of Chemical Theory and Computation, 2022, 18, 2292-2307.	5.3	7
3	From Serendipity to Rational Design: Heteroleptic Dirhodium Amidate Complexes for Diastereodivergent Asymmetric Cyclopropanation. Journal of the American Chemical Society, 2022, 144, 7465-7478.	13.7	23
4	Taming phosphorus mononitride. Nature Chemistry, 2022, 14, 928-934.	13.6	18
5	An induced-fit model for asymmetric organocatalytic reactions: a case study of the activation of olefins <i>via</i> chiral BrÃ,nsted acid catalysts. Chemical Science, 2022, 13, 8848-8859.	7.4	8
6	Local energy decomposition of coupledâ€cluster interaction energies: Interpretation, benchmarks, and comparison with symmetryâ€adapted perturbation theory. International Journal of Quantum Chemistry, 2021, 121, e26339.	2.0	36
7	Unraveling individual <scp>host–guest</scp> interactions in molecular recognition from first principles quantum mechanics: Insights into the nature of nicotinic acetylcholine receptor agonist binding. Journal of Computational Chemistry, 2021, 42, 293-302.	3.3	12
8	Unveiling the complex pattern of intermolecular interactions responsible for the stability of the DNA duplex. Chemical Science, 2021, 12, 12785-12793.	7.4	11
9	Redesigning donor–acceptor Stenhouse adduct photoswitches through a joint experimental and computational study. Chemical Science, 2021, 12, 2916-2924.	7.4	18
10	A New Ligand Design Based on London Dispersion Empowers Chiral Bismuth–Rhodium Paddlewheel Catalysts. Journal of the American Chemical Society, 2021, 143, 5666-5673.	13.7	42
11	Fragment-Based Local Coupled Cluster Embedding Approach for the Quantification and Analysis of Noncovalent Interactions: Exploring the Many-Body Expansion of the Local Coupled Cluster Energy. Journal of Chemical Theory and Computation, 2021, 17, 3348-3359.	5.3	7
12	Understanding the Nature and Properties of Hydrogen–Hydrogen Bonds: The Stability of a Bulky Phosphatetrahedrane as a Case Study. Journal of Physical Chemistry A, 2021, 125, 6151-6157.	2.5	10
13	Triple Resonance Experiments for the Rapid Detection of ¹⁰³ Rh NMR Shifts: A Combined Experimental and Theoretical Study into Dirhodium and Bismuth–Rhodium Paddlewheel Complexes. Journal of the American Chemical Society, 2021, 143, 12473-12479.	13.7	16
14	Addressing the System-Size Dependence of the Local Approximation Error in Coupled-Cluster Calculations. Journal of Physical Chemistry A, 2021, 125, 9932-9939.	2.5	17
15	Harnessing the ambiphilicity of silyl nitronates in a catalytic asymmetric approach to aliphatic β3-amino acids. Nature Catalysis, 2021, 4, 1043-1049.	34.4	20
16	Finding chemical concepts in the Hilbert space: Coupled cluster analyses of noncovalent interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1442.	14.6	56
17	Dispersion Forces Drive the Formation of Uranium–Alkane Adducts. Journal of the American Chemical Society, 2020, 142, 1864-1870.	13.7	17
18	Formyltetrahydrofolate Decarbonylase Synthesizes the Active Site CO Ligand of O ₂ -Tolerant [NiFe] Hydrogenase. Journal of the American Chemical Society, 2020, 142, 1457-1464.	13.7	24

GIOVANNI BISTONI

#	Article	IF	CITATIONS
19	Unveiling the Photophysical Properties of Boron-dipyrromethene Dyes Using a New Accurate Excited State Coupled Cluster Method. Journal of Chemical Theory and Computation, 2020, 16, 564-575.	5.3	64
20	Hydrogenative Metathesis of Enynes via Piano-Stool Ruthenium Carbene Complexes Formed by Alkyne gem-Hydrogenation. Journal of the American Chemical Society, 2020, 142, 18541-18553.	13.7	30
21	Extrapolation to the Limit of a Complete Pair Natural Orbital Space in Local Coupled-Cluster Calculations. Journal of Chemical Theory and Computation, 2020, 16, 6142-6149.	5.3	45
22	The first microsolvation step for furans: New experiments and benchmarking strategies. Journal of Chemical Physics, 2020, 152, 164303.	3.0	28
23	Strong and Confined Acids Control Five Stereogenic Centers in Catalytic Asymmetric Diels–Alder Reactions of Cyclohexadienones with Cyclopentadiene. Angewandte Chemie - International Edition, 2020, 59, 12347-12351.	13.8	30
24	Orbital Decomposition of the Carbon Chemical Shielding Tensor in Gold(I) Nâ€Heterocyclic Carbene Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1177-1183.	2.0	4
25	Starke und sterisch begrenzte SÃ ¤ ren kontrollieren fünf stereogene Zentren in der katalytischen asymmetrischen Dielsâ€Alderâ€Reaktion von Cyclohexadienonen mit Cyclopentadien. Angewandte Chemie, 2020, 132, 12446-12450.	2.0	7
26	Unveiling the Delicate Balance of Steric and Dispersion Interactions in Organocatalysis Using High-Level Computational Methods. Journal of the American Chemical Society, 2020, 142, 3613-3625.	13.7	58
27	Computational Design of Near-Infrared Fluorescent Organic Dyes Using an Accurate New Wave Function Approach. Journal of Physical Chemistry Letters, 2019, 10, 4822-4828.	4.6	33
28	HFLD: A Nonempirical London Dispersion-Corrected Hartree–Fock Method for the Quantification and Analysis of Noncovalent Interaction Energies of Large Molecular Systems. Journal of Chemical Theory and Computation, 2019, 15, 5894-5907.	5.3	36
29	Local Energy Decomposition of Open-Shell Molecular Systems in the Domain-Based Local Pair Natural Orbital Coupled Cluster Framework. Journal of Chemical Theory and Computation, 2019, 15, 1616-1632.	5.3	86
30	London dispersion effects in the coordination and activation of alkanes in If -complexes: a local energy decomposition study. Physical Chemistry Chemical Physics, 2019, 21, 11569-11577.	2.8	54
31	Physical Nature of Differential Spin-State Stabilization of Carbenes by Hydrogen and Halogen Bonding: A Domain-Based Pair Natural Orbital Coupled Cluster Study. Journal of Physical Chemistry A, 2019, 123, 5081-5090.	2.5	19
32	Chemistry and Quantum Mechanics in 2019: Give Us Insight <i>and</i> Numbers. Journal of the American Chemical Society, 2019, 141, 2814-2824.	13.7	93
33	Effect of Electron Correlation on Intermolecular Interactions: A Pair Natural Orbitals Coupled Cluster Based Local Energy Decomposition Study. Journal of Chemical Theory and Computation, 2019, 15, 215-228.	5.3	84
34	Formation of Agostic Structures Driven by London Dispersion. Angewandte Chemie - International Edition, 2018, 57, 4760-4764.	13.8	55
35	Formation of Agostic Structures Driven by London Dispersion. Angewandte Chemie, 2018, 130, 4850-4854.	2.0	7
36	The furan microsolvation blind challenge for quantum chemical methods: First steps. Journal of Chemical Physics, 2018, 148, 014301.	3.0	44

GIOVANNI BISTONI

#	Article	IF	CITATIONS
37	Scalable and Highly Diastereo- and Enantioselective Catalytic Diels–Alder Reaction of α,β-Unsaturated Methyl Esters. Journal of the American Chemical Society, 2018, 140, 12671-12676.	13.7	52
38	London Dispersion Interactions in Pnictogen Cations [ECl ₂] ⁺ and [E=E] ²⁺ (E=P, As, Sb) Supported by Anionic <i>N</i> â€Heterocyclic Carbenes. Chemistry - A European Journal, 2018, 24, 18922-18932.	3.3	47
39	Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study. Beilstein Journal of Organic Chemistry, 2018, 14, 919-929.	2.2	72
40	Toward Accurate QM/MM Reaction Barriers with Large QM Regions Using Domain Based Pair Natural Orbital Coupled Cluster Theory. Journal of Chemical Theory and Computation, 2018, 14, 3524-3531.	5.3	37
41	Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation. Physical Chemistry Chemical Physics, 2017, 19, 9374-9391.	2.8	43
42	Modulating the Bonding Properties of Nâ€Heterocyclic Carbenes (NHCs): A Systematic Chargeâ€Đisplacement Analysis. Chemistry - A European Journal, 2017, 23, 7558-7569.	3.3	45
43	¹³ Câ€NMR Spectroscopy of Nâ€Heterocyclic Carbenes Can Selectively Probe σ Donation in Gold(I) Complexes. Chemistry - A European Journal, 2017, 23, 2722-2728.	3.3	38
44	Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An Out-of-the-Box Approach. Journal of Chemical Theory and Computation, 2017, 13, 3220-3227.	5.3	45
45	Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A Domainâ€Based Local Pair Natural Orbital Coupled Cluster Study. Chemistry - A European Journal, 2017, 23, 865-873.	3.3	91
46	Electronic Structure Calculations and Experimental Studies on the Thermal Initiation of the Twin Polymerization Process. ChemPlusChem, 2017, 82, 1396-1407.	2.8	4
47	Charge Transfer in Beryllium Bonds and Cooperativity of Beryllium and Halogen Bonds. A New Perspective. Challenges and Advances in Computational Chemistry and Physics, 2016, , 461-489.	0.6	1
48	Ï€ Activation of Alkynes in Homogeneous and Heterogeneous Gold Catalysis. Journal of Physical Chemistry A, 2016, 120, 5239-5247.	2.5	49
49	Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework. Journal of Chemical Theory and Computation, 2016, 12, 4778-4792.	5.3	231
50	Strong Electron-Donating Ligands Accelerate the Protodeauration Step in Gold(I)-Catalyzed Reactions: A <i>Quantitative</i> Understanding of the Ligand Effect. Organometallics, 2016, 35, 2275-2285.	2.3	41
51	Advances in Charge Displacement Analysis. Journal of Chemical Theory and Computation, 2016, 12, 1236-1244.	5.3	27
52	How π back-donation quantitatively controls the CO stretching response in classical and non-classical metal carbonyl complexes. Chemical Science, 2016, 7, 1174-1184.	7.4	158
53	Selectively Measuring Ï€â€Backâ€Donation in Gold(I) Complexes by NMR Spectroscopy. Chemistry - A European Journal, 2015, 21, 2467-2473.	3.3	53
54	Anomalous ligand effect in gold(i)-catalyzed intramolecular hydroamination of alkynes. Chemical Communications, 2015, 51, 5990-5993.	4.1	24

GIOVANNI BISTONI

#	Article	IF	CITATIONS
55	Quantitative assessment of the carbocation/carbene character of the gold–carbene bond. Dalton Transactions, 2015, 44, 13999-14007.	3.3	29
56	Charge-displacement analysis via natural orbitals for chemical valence: Charge transfer effects in coordination chemistry. Journal of Chemical Physics, 2015, 142, 084112.	3.0	69
57	Relationship between the anion/cation relative orientation and the catalytic activity of nitrogen acyclic carbene–gold catalysts. Catalysis Science and Technology, 2015, 5, 1558-1567.	4.1	28
58	When the Tolman Electronic Parameter Fails: A Comparative DFT and Charge Displacement Study of [(L)Ni(CO) ₃] ^{0/–} and [(L)Au(CO)] ^{0/+} . Inorganic Chemistry, 2014, 53, 9907-9916.	4.0	67
59	The Chemical Bond in Gold(I) Complexes with N-Heterocyclic Carbenes. Organometallics, 2014, 33, 4200-4208.	2.3	73
60	NHC-Gold-Alkyne Complexes: Influence of the Carbene Backbone on the Ion Pair Structure. Organometallics, 2013, 32, 4444-4447.	2.3	56
61	Disentanglement of Donation and Backâ€Donation Effects on Experimental Observables: A Case Study of Gold–Ethyne Complexes. Angewandte Chemie - International Edition, 2013, 52, 11599-11602.	13.8	61
62	Charge-Displacement Analysis of the Interaction in the Ammonia–Noble Gas Complexes. Journal of Physical Chemistry A, 2011, 115, 14657-14666.	2.5	23
63	Can Domain-Based Local Pair Natural Orbitals Approaches Accurately Predict Phosphorescence Energies?. Physical Chemistry Chemical Physics, 0, , .	2.8	3