
Florentine M Hilty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9502753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron from nanostructured ferric phosphate: absorption and biodistribution in mice and bioavailability in iron deficient anemic women. Scientific Reports, 2022, 12, 2792.	3.3	5
2	Nano- and Pheroid technologies for development of foliar iron fertilizers and iron biofortification of soybean grown in South Africa. Chemical and Biological Technologies in Agriculture, 2018, 5, .	4.6	4
3	Chemical Composition but Not Specific Surface Area Affects Calcium Retention of Nanostructured Calcium Compounds in Growing Rats. Journal of Nutrition, 2017, 147, jn241927.	2.9	3
4	Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nature Nanotechnology, 2017, 12, 642-647.	31.5	216
5	Iron phosphate nanoparticles for food fortification: Biological effects in rats and human cell lines. Nanotoxicology, 2017, 11, 496-506.	3.0	36
6	Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells. Nutrients, 2017, 9, 359.	4.1	38
7	Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	5
8	Proton-Promoted Iron Dissolution from Nanoparticles and the Influence by the Local Iron Environment. Journal of Physical Chemistry C, 2014, 118, 24072-24080.	3.1	13
9	Multimineral nutritional supplements in a nano-CaO matrix. Journal of Materials Research, 2013, 28, 1129-1138.	2.6	6
10	Iron Depletion and Repletion with Ferrous Sulfate or Electrolytic Iron Modifies the Composition and Metabolic Activity of the Gut Microbiota in Rats3. Journal of Nutrition, 2012, 142, 271-277.	2.9	166
11	Nanocompounds of iron and zinc: their potential in nutrition. Nanoscale, 2011, 3, 2390.	5.6	50
12	Incorporation of Mg and Ca into Nanostructured Fe ₂ O ₃ Improves Fe Solubility in Dilute Acid and Sensory Characteristics in Foods. Journal of Food Science, 2011, 76, N2-10.	3.1	34
13	Iron fortification: Flame-made nanostructured Mg- or Ca-doped Fe oxides. Materials Research Society Symposia Proceedings, 2011, 1316, 1.	0.1	0
14	Schoolchildren in the Principality of Liechtenstein are mildly iodine deficient. Public Health Nutrition, 2011, 14, 1312-1314.	2.2	6
15	Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nature Nanotechnology, 2010, 5, 374-380.	31.5	156
16	Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications. Nanotechnology, 2009, 20, 475101.	2.6	44