
Maxim G Ryadnov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9501837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigating Membraneâ€Mediated Antimicrobial Peptide Interactions with Synchrotron Radiation Farâ€Infrared Spectroscopy. ChemPhysChem, 2022, 23, e202100815.	2.1	2
2	An ultrasensitive microfluidic approach reveals correlations between the physico-chemical and biological activity of experimental peptide antibiotics. Scientific Reports, 2022, 12, 4005.	3.3	9
3	In-situ nanoscale imaging reveals self-concentrating nanomolar antimicrobial pores. Nanoscale, 2022, , .	5.6	0
4	An SI-traceable reference material for virus-like particles. IScience, 2022, 25, 104294.	4.1	7
5	Measuring Thousands of Single-Vesicle Leakage Events Reveals the Mode of Action of Antimicrobial Peptides. Analytical Chemistry, 2022, 94, 9530-9539.	6.5	7
6	Atomic force microscopy to elucidate how peptides disrupt membranes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183447.	2.6	36
7	Membrane Binding of Antimicrobial Peptides Is Modulated by Lipid Charge Modification. Journal of Chemical Theory and Computation, 2021, 17, 1218-1228.	5.3	10
8	Designer protein pseudo-capsids targeting intracellular bacteria. Biomaterials Science, 2021, 9, 6807-6812.	5.4	3
9	Switching Cytolytic Nanopores into Antimicrobial Fractal Ruptures by a Single Side Chain Mutation. ACS Nano, 2021, 15, 9679-9689.	14.6	17
10	Imaging and 3D Reconstruction of De Novo Peptide Capsids. Methods in Molecular Biology, 2021, 2208, 149-165.	0.9	2
11	Ultramicrotomy Analysis of Peptide-Treated Cells. Methods in Molecular Biology, 2021, 2208, 255-264.	0.9	2
12	Peptide Nanoparticles for Gene Packaging and Intracellular Delivery. Methods in Molecular Biology, 2021, 2208, 33-48.	0.9	6
13	Phase separation in the outer membrane of <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	53
14	Engineering Chirally Blind Protein Pseudocapsids into Antibacterial Persisters. ACS Nano, 2020, 14, 1609-1622.	14.6	42
15	Flowering Poration—A Synergistic Multi-Mode Antibacterial Mechanism by a Bacteriocin Fold. IScience, 2020, 23, 101423.	4.1	16
16	Revealing Sources of Variation for Reproducible Imaging of Protein Assemblies by Electron Microscopy. Micromachines, 2020, 11, 251.	2.9	2
17	Annexin V Drives Stabilization of Damaged Asymmetric Phospholipid Bilayers. Langmuir, 2020, 36, 5454-5465.	3.5	9
18	Protein fibrillogenesis model tracked by its intrinsic time-resolved emission spectra. Methods and Applications in Fluorescence, 2019, 7, 035003.	2.3	2

MAXIM G RYADNOV

#	Article	IF	CITATIONS
19	Tracking Insulin Glycation in Real Time by Time-Resolved Emission Spectroscopy. Journal of Physical Chemistry B, 2019, 123, 7812-7817.	2.6	3
20	A microfluidic platform for the characterisation of membrane active antimicrobials. Lab on A Chip, 2019, 19, 837-844.	6.0	46
21	Helminth Defense Molecules as Design Templates for Membrane Active Antibiotics. ACS Infectious Diseases, 2019, 5, 1471-1479.	3.8	11
22	Cholesterol Anchors Enable Efficient Binding and Intracellular Uptake of DNA Nanostructures. Bioconjugate Chemistry, 2019, 30, 1836-1844.	3.6	25
23	Imaging live bacteria at the nanoscale: comparison of immobilisation strategies. Analyst, The, 2019, 144, 6944-6952.	3.5	21
24	Cellular Metrology: Scoping for a Value Proposition in Extra- and Intracellular Measurements. Frontiers in Bioengineering and Biotechnology, 2019, 7, 456.	4.1	10
25	DNA Origami Inside-Out Viruses. ACS Synthetic Biology, 2018, 7, 767-773.	3.8	42
26	Tuneable poration: host defense peptides as sequence probes for antimicrobial mechanisms. Scientific Reports, 2018, 8, 14926.	3.3	24
27	Accelerating molecular discovery through data and physical sciences: Applications to peptide-membrane interactions. Journal of Chemical Physics, 2018, 148, 241744.	3.0	10
28	Nano-mechanical in-process monitoring of antimicrobial poration in model phospholipid bilayers. RSC Advances, 2017, 7, 19081-19084.	3.6	2
29	Linear and orthogonal peptide templating of silicified protein fibres. Organic and Biomolecular Chemistry, 2017, 15, 5380-5385.	2.8	2
30	Binary Encoding of Random Peptide Sequences for Selective and Differential Antimicrobial Mechanisms. Angewandte Chemie - International Edition, 2017, 56, 8099-8103.	13.8	33
31	CREIM: Coffee Ring Effect Imaging Model for Monitoring Protein Self-Assembly <i>in Situ</i> . Journal of Physical Chemistry Letters, 2017, 8, 4846-4851.	4.6	14
32	Engineering monolayer poration for rapid exfoliation of microbial membranes. Chemical Science, 2017, 8, 1105-1115.	7.4	35
33	Modulating charge-dependent and folding-mediated antimicrobial interactions at peptide–lipid interfaces. European Biophysics Journal, 2017, 46, 375-382.	2.2	3
34	Antimicrobial peptide capsids of de novo design. Nature Communications, 2017, 8, 2263.	12.8	63
35	Insulin aggregation tracked by its intrinsic TRES. Applied Physics Letters, 2017, 111, 263701.	3.3	5
36	A De Novo Virus-Like Topology for Synthetic Virions. Journal of the American Chemical Society, 2016, 138, 12202-12210.	13.7	59

MAXIM G RYADNOV

#	Article	IF	CITATIONS
37	Autonomously folded α-helical lockers promote RNAi*. Scientific Reports, 2016, 6, 35012.	3.3	7
38	What Is the â€~Minimum Inhibitory Concentration' (MIC) of Pexiganan Acting on Escherichia coli?—A Cautionary Case Study. Advances in Experimental Medicine and Biology, 2016, 915, 33-48.	1.6	28
39	Structurally plastic peptide capsules for synthetic antimicrobial viruses. Chemical Science, 2016, 7, 1707-1711.	7.4	43
40	Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides. Physical Chemistry Chemical Physics, 2015, 17, 15608-15614.	2.8	19
41	Interfacial zippering-up of coiled-coil protein filaments. Physical Chemistry Chemical Physics, 2015, 17, 31055-31060.	2.8	11
42	Filming protein fibrillogenesis in real time. Scientific Reports, 2015, 4, 7529.	3.3	14
43	Peptide self-assembly for nanomaterials: the old new kid on the block. Chemical Society Reviews, 2015, 44, 8288-8300.	38.1	212
44	Stable isotope imaging of biological samples with high resolution secondary ion mass spectrometry and complementary techniques. Methods, 2014, 68, 317-324.	3.8	41
45	Exploitable length correlations in peptide nanofibres. Nanoscale, 2014, 6, 11425-11430.	5.6	14
46	Differentially Instructive Extracellular Protein Micro-nets. Journal of the American Chemical Society, 2014, 136, 7889-7898.	13.7	34
47	Where is the drug gone? – Measuring intracellular delivery and localization. Methods, 2014, 68, 281-282.	3.8	2
48	Probing label-free intracellular quantification of free peptide by MALDI-ToF mass spectrometry. Methods, 2014, 68, 331-337.	3.8	11
49	Cicada-inspired cell-instructive nanopatterned arrays. Scientific Reports, 2014, 4, 7122.	3.3	211
50	Anti-antimicrobial Peptides. Journal of Biological Chemistry, 2013, 288, 20162-20172.	3.4	31
51	Nanoscale imaging reveals laterally expanding antimicrobial pores in lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8918-8923.	7.1	112
52	Membrane mediated regulation in free peptides of HIV-1 gp41: minimal modulation of the hemifusion phase. Physical Chemistry Chemical Physics, 2012, 14, 1277-1285.	2.8	9
53	Natively Unfolded State for Engineering Nanoscale Fibrillar Arrays. Macromolecular Bioscience, 2012, 12, 195-201.	4.1	5
54	Arbitrary Selfâ€Assembly of Peptide Extracellular Microscopic Matrices. Angewandte Chemie - International Edition, 2012, 51, 428-431.	13.8	33

MAXIM G RYADNOV

#	Article	IF	CITATIONS
55	GeT peptides: a single-domain approach to gene delivery. Chemical Communications, 2011, 47, 9045.	4.1	13
56	Selfâ€Assembling Viral Mimetics: One Long Journey with Short Steps. Macromolecular Bioscience, 2011, 11, 503-513.	4.1	30
57	REâ€Coil: An Antimicrobial Peptide Regulator. Angewandte Chemie - International Edition, 2009, 48, 9676-9679.	13.8	15
58	Modular Design of Peptide Fibrillar Nano- to Microstructures. Journal of the American Chemical Society, 2009, 131, 13240-13241.	13.7	48
59	Templating Silica Nanostructures on Rationally Designed Self-Assembled Peptide Fibers. Langmuir, 2008, 24, 11778-11783.	3.5	79
60	The Leucine Zipper as a Building Block for Self-Assembled Protein Fibers. Methods in Molecular Biology, 2008, 474, 35-51.	0.9	12
61	Engineering nanoscale order into a designed protein fiber. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10853-10858.	7.1	234
62	Peptide \hat{I}_{\pm} -helices for synthetic nanostructures. Biochemical Society Transactions, 2007, 35, 487-491.	3.4	21
63	Self-Assembled Templates for Polypeptide Synthesis. Journal of the American Chemical Society, 2007, 129, 14074-14081.	13.7	39
64	A Self-Assembling Peptide Polynanoreactor. Angewandte Chemie - International Edition, 2007, 46, 969-972.	13.8	60
65	MaP Peptides:Â Programming the Self-Assembly of Peptide-Based Mesoscopic Matrices. Journal of the American Chemical Society, 2005, 127, 12407-12415.	13.7	68
66	Fiber Recruiting Peptides:Â Noncovalent Decoration of an Engineered Protein Scaffold. Journal of the American Chemical Society, 2004, 126, 7454-7455.	13.7	99
67	Introducing Branches into a Self-Assembling Peptide Fiber. Angewandte Chemie - International Edition, 2003, 42, 3021-3023.	13.8	125
68	Engineering the morphology of a self-assembling protein fibre. Nature Materials, 2003, 2, 329-332.	27.5	256
69	A new synthetic all-d-peptide with high bacterial and low mammalian cytotoxicity. Peptides, 2002, 23, 1869-1871.	2.4	21

70 Self-Assembling Nanostructures from Coiled-Coil Peptides. , 0, , 17-38.