William H Warren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9499966/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perceiving affordances: Visual guidance of stair climbing Journal of Experimental Psychology: Human Perception and Performance, 1984, 10, 683-703.	0.9	841
2	The dynamics of perception and action Psychological Review, 2006, 113, 358-389.	3.8	709
3	Visual guidance of walking through apertures: Body-scaled information for affordances Journal of Experimental Psychology: Human Perception and Performance, 1987, 13, 371-383.	0.9	701
4	Optic flow is used to control human walking. Nature Neuroscience, 2001, 4, 213-216.	14.8	619
5	Direction of self-motion is perceived from optical flow. Nature, 1988, 336, 162-163.	27.8	535
6	Perception of translational heading from optical flow Journal of Experimental Psychology: Human Perception and Performance, 1988, 14, 646-660.	0.9	390
7	Behavioral dynamics of steering, obstable avoidance, and route selection Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 343-362.	0.9	336
8	Do Humans Integrate Routes Into a Cognitive Map? Map- Versus Landmark-Based Navigation of Novel Shortcuts Journal of Experimental Psychology: Learning Memory and Cognition, 2005, 31, 195-215.	0.9	317
9	Eye movements and optical flow. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1990, 7, 160.	1.5	285
10	Virtual reality in behavioral neuroscience and beyond. Nature Neuroscience, 2002, 5, 1089-1092.	14.8	230
11	Path Integration from Optic Flow and Body Senses in a Homing Task. Perception, 2002, 31, 349-374.	1.2	190
12	Perception of circular heading from optical flow Journal of Experimental Psychology: Human Perception and Performance, 1991, 17, 28-43.	0.9	152
13	Visual navigation and obstacle avoidance using a steering potential function. Robotics and Autonomous Systems, 2006, 54, 288-299.	5.1	148
14	Perception of heading during rotation: sufficiency of dense motion parallax and reference objects. Vision Research, 2000, 40, 3873-3894.	1.4	127
15	Visual Guidance of Intercepting a Moving Target on Foot. Perception, 2004, 33, 689-715.	1.2	123
16	Behavioral dynamics of intercepting a moving target. Experimental Brain Research, 2007, 180, 303-319.	1.5	122
17	Wormholes in virtual space: From cognitive maps to cognitive graphs. Cognition, 2017, 166, 152-163.	2.2	118
18	Active and passive spatial learning in human navigation: Acquisition of survey knowledge Journal of Experimental Psychology: Learning Memory and Cognition, 2013, 39, 1520-1537.	0.9	115

WILLIAM H WARREN

#	Article	IF	CITATIONS
19	Visual control of braking: A test of the !ṫ hypothesis Journal of Experimental Psychology: Human Perception and Performance, 1995, 21, 996-1014.	0.9	111
20	The role of central and peripheral vision in postural control duringwalking. Perception & Psychophysics, 1999, 61, 1356-1368.	2.3	102
21	Active and passive spatial learning in human navigation: Acquisition of graph knowledge Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 1162-1178.	0.9	102
22	Self-Motion. , 1995, , 263-325.		95
23	Ecological Robotics. Adaptive Behavior, 1998, 6, 473-507.	1.9	95
24	Optic Flow Drives Human Visuo-Locomotor Adaptation. Current Biology, 2007, 17, 2035-2040.	3.9	90
25	From Cognitive Maps to Cognitive Graphs. PLoS ONE, 2014, 9, e112544.	2.5	89
26	On-line and model-based approaches to the visual control of action. Vision Research, 2015, 110, 190-202.	1.4	89
27	Motion parallax is used to control postural sway during walking. Experimental Brain Research, 1996, 111, 271-282.	1.5	85
28	A Dynamical Model of Visually-Guided Steering, Obstacle Avoidance, and Route Selection. International Journal of Computer Vision, 2003, 54, 13-34.	15.6	80
29	Chapter 14 Action Modes and Laws of Control for the Visual Guidance Of Action. Advances in Psychology, 1988, 50, 339-379.	0.1	79
30	Follow the leader: Visual control of speed in pedestrian following. Journal of Vision, 2014, 14, 4-4.	0.3	79
31	How You Get There From Here. Psychological Science, 2015, 26, 915-924.	3.3	72
32	Non-Euclidean navigation. Journal of Experimental Biology, 2019, 222, .	1.7	72
33	The Way the Ball Bounces: Visual and Auditory Perception of Elasticity and Control of the Bounce Pass. Perception, 1987, 16, 309-336.	1.2	70
34	A Visual Equalization Strategy for Locomotor Control: Of Honeybees, Robots, and Humans. Psychological Science, 2002, 13, 272-278.	3.3	62
35	Collective Motion in Human Crowds. Current Directions in Psychological Science, 2018, 27, 232-240.	5.3	61
36	Retinal Flow Is Sufficient for Steering During Observer Rotation. Psychological Science, 2002, 13, 485-490.	3.3	54

WILLIAM H WARREN

#	Article	IF	CITATIONS
37	Local interactions underlying collective motion in human crowds. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180611.	2.6	54
38	Path perception during rotation: influence of instructions, depth range, and dot density. Vision Research, 2004, 44, 1879-1889.	1.4	40
39	Behavioral Dynamics of Visually Guided Locomotion. , 2008, , 45-75.		38
40	The Direction of Walking—but Not Throwing or Kicking—Is Adapted by Optic Flow. Psychological Science, 2010, 21, 1006-1013.	3.3	36
41	Environmental stability modulates the role of path integration in human navigation. Cognition, 2015, 142, 96-109.	2.2	34
42	Direct Perception. Philosophical Topics, 2005, 33, 335-361.	0.3	33
43	Heading Perception in Patients with Advanced Retinitis Pigmentosa. Optometry and Vision Science, 2002, 79, 581-589.	1.2	30
44	Bumblebees perceive the spatial layout of their environment in relation to their body size and form to minimize inflight collisions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31494-31499.	7.1	30
45	From Optic Flow to Laws of Control. , 2004, , 307-337.		29
46	Does This Computational Theory Solve the Right Problem? Marr, Gibson, and the Goal of Vision. Perception, 2012, 41, 1053-1060.	1.2	29
47	Behavioral Dynamics of Heading Alignment in Pedestrian Following. Transportation Research Procedia, 2014, 2, 69-76.	1.5	27
48	Intercepting a moving target: On-line or model-based control?. Journal of Vision, 2017, 17, 12.	0.3	23
49	The Visual Coupling between Neighbors in Real and Virtual Crowds. Transportation Research Procedia, 2014, 2, 132-140.	1.5	22
50	Probing the invariant structure of spatial knowledge: Support for the cognitive graph hypothesis. Cognition, 2020, 200, 104276.	2.2	20
51	Information Is Where You Find It: Perception as an Ecologically Well-Posed Problem. I-Perception, 2021, 12, 204166952110003.	1.4	19
52	Does the human odometer use an extrinsic or intrinsic metric?. Attention, Perception, and Psychophysics, 2014, 76, 230-246.	1.3	18
53	Exit choice during evacuation is influenced by both the size and proportion of the egressing crowd. Physica A: Statistical Mechanics and Its Applications, 2021, 569, 125746.	2.6	18
54	Do walkers follow their heads? Investigating the role of head rotation in locomotor control. Experimental Brain Research, 2012, 219, 175-190.	1.5	17

WILLIAM H WARREN

#	Article	IF	CITATIONS
55	Rotational error in path integration: encoding and execution errors in angle reproduction. Experimental Brain Research, 2017, 235, 1885-1897.	1.5	17
56	The visual coupling between neighbours explains local interactions underlying human †flocking'. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212089.	2.6	13
57	Crowd Dynamics in Virtual Reality. Modeling and Simulation in Science, Engineering and Technology, 2018, , 15-36.	0.6	12
58	Nonverbal leadership emergence in walking groups. Scientific Reports, 2020, 10, 18948.	3.3	12
59	How do animals get about by vision? Visually controlled locomotion and orientation after 50 years. British Journal of Psychology, 2009, 100, 277-281.	2.3	10
60	A vision-based model for the joint control of speed and heading in pedestrian following. Journal of Vision, 2017, 17, 716.	0.3	10
61	Analysis of emergent patterns in crossing flows of pedestrians reveals an invariant of â€~stripe' formation in human data. PLoS Computational Biology, 2022, 18, e1010210.	3.2	9
62	VR-Based Assessment and Rehabilitation of Functional Mobility. , 2013, , 333-350.		7
63	Route selection in barrier avoidance. Gait and Posture, 2020, 80, 192-198.	1.4	6
64	Executing the homebound path is a major source of error in homing by path integration Journal of Experimental Psychology: Human Perception and Performance, 2021, 47, 13-35.	0.9	6
65	Quantifying and Modeling Coordination and Coherence in Pedestrian Groups. Frontiers in Psychology, 2017, 8, 949.	2.1	5
66	The relative rate of optical expansion controls speed in 1D pedestrian followin. Journal of Vision, 2019, 19, 52.	0.3	4
67	Comparing Simple-radius and Doughnut Models of Collective Crowd Motion. Journal of Vision, 2018, 18, 1036.	0.3	4
68	Robust Weighted Averaging Accounts for Recruitment Into Collective Motion in Human Crowds. Frontiers in Applied Mathematics and Statistics, 2021, 7, .	1.3	4
69	Sensorimotor Recalibration in Virtual Environments. Virtual Reality Technologies for Health and Clinical Applications, 2014, , 71-94.	0.8	3
70	Non-optimal perceptual decision in human navigation. Behavioral and Brain Sciences, 2018, 41, e250.	0.7	3
71	Metric vs. Topological Models of Collective Motion in Human Crowds. Journal of Vision, 2018, 18, 1035.	0.3	1