List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9499915/publications.pdf Version: 2024-02-01

		23567	20358
117	19,908	58	116
papers	citations	h-index	g-index
100	100	100	22517
122	122	122	32517
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The scaffold-dependent function of RIPK1 in dendritic cells promotes injury-induced colitis. Mucosal Immunology, 2022, 15, 84-95.	6.0	7
2	Regulation of the release of damage-associated molecular patterns from necroptotic cells. Biochemical Journal, 2022, 479, 677-685.	3.7	17
3	Proscillaridin A Sensitizes Human Colon Cancer Cells to TRAIL-Induced Cell Death. International Journal of Molecular Sciences, 2022, 23, 6973.	4.1	Ο
4	Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nature Communications, 2021, 12, 2281.	12.8	60
5	Time-Lapse Imaging of Necroptosis and DAMP Release at Single-Cell Resolution. Methods in Molecular Biology, 2021, 2274, 353-363.	0.9	2
6	MIND bomb 2 prevents RIPK1 kinase activity-dependent and -independent apoptosis through ubiquitylation of cFLIPL. Communications Biology, 2021, 4, 80.	4.4	13
7	Regulation of T cell differentiation by the AP-1 transcription factor JunB. Immunological Medicine, 2021, 44, 197-203.	2.6	25
8	A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction. Nature Communications, 2020, 11, 3150.	12.8	75
9	Regenerating islet-derived protein (Reg)3β plays a crucial role in attenuation of ileitis and colitis in mice. Biochemistry and Biophysics Reports, 2020, 21, 100738.	1.3	11
10	Identification of a phosphorylation site on Ulk1 required for genotoxic stress-induced alternative autophagy. Nature Communications, 2020, 11, 1754.	12.8	46
11	Inhibition of Importin β1 Augments the Anticancer Effect of Agonistic Anti-Death Receptor 5 Antibody in TRAIL-resistant Tumor Cells. Molecular Cancer Therapeutics, 2020, 19, 1123-1133.	4.1	6
12	Identification of the hallmarks of necroptosis and ferroptosis by transmission electron microscopy. Biochemical and Biophysical Research Communications, 2020, 527, 839-844.	2.1	39
13	JunB plays a crucial role in development of regulatory T cells by promoting IL-2 signaling. Mucosal Immunology, 2019, 12, 1104-1117.	6.0	34
14	Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death and Disease, 2019, 10, 449.	6.3	267
15	Necroptosis of Intestinal Epithelial Cells Induces Type 3 Innate Lymphoid Cell-Dependent Lethal Ileitis. IScience, 2019, 15, 536-551.	4.1	21
16	Regulation of membrane phospholipid asymmetry by Notch-mediated flippase expression controls the number of intraepithelial TCRαβ+CD8αα+ T cells. PLoS Biology, 2019, 17, e3000262.	5.6	3
17	Addendum: A FRET biosensor for necroptosis uncovers two different modes of the release of DAMPs. Nature Communications, 2019, 10, 1923.	12.8	2
18	A murine model of acute lung injury identifies growth factors to promote tissue repair and their biomarkers. Genes To Cells, 2019, 24, 112-125.	1.2	5

#	Article	IF	CITATIONS
19	Blockade of TNF receptor superfamily 1 (TNFR1)–dependent and TNFR1-independent cell death is crucial for normal epidermal differentiation. Journal of Allergy and Clinical Immunology, 2019, 143, 213-228.e10.	2.9	11
20	Development of novel methods that monitor necroptosis and the release of DAMPs at the single cell resolution. Cell Stress, 2019, 3, 66-69.	3.2	10
21	Generation of and characterization of anti-IL-11 antibodies using newly established Il11-deficient mice. Biochemical and Biophysical Research Communications, 2018, 505, 453-459.	2.1	11
22	A FRET biosensor for necroptosis uncovers two different modes of the release of DAMPs. Nature Communications, 2018, 9, 4457.	12.8	65
23	The AP-1 transcription factor JunB is required for Th17 cell differentiation. Scientific Reports, 2017, 7, 17402.	3.3	47
24	Depletion of myeloid cells exacerbates hepatitis and induces an aberrant increase in histone H3 in mouse serum. Hepatology, 2017, 65, 237-252.	7.3	12
25	Critical Contribution of Nuclear Factor Erythroid 2-related Factor 2 (NRF2) to Electrophile-induced Interleukin-11 Production. Journal of Biological Chemistry, 2017, 292, 205-216.	3.4	22
26	HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains. PLoS Pathogens, 2017, 13, e1006162.	4.7	30
27	Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome. Scientific Reports, 2016, 6, 37200.	3.3	11
28	Short form FLICE-inhibitory protein promotes TNFα-induced necroptosis in fibroblasts derived from CFLARs transgenic mice. Biochemical and Biophysical Research Communications, 2016, 480, 23-28.	2.1	6
29	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
30	FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP. International Journal of Molecular Sciences, 2015, 16, 30321-30341.	4.1	118
31	Cellular FLICE-Inhibitory Protein Regulates Tissue Homeostasis. Current Topics in Microbiology and Immunology, 2015, 403, 119-141.	1.1	14
32	The adaptor TRAF5 limits the differentiation of inflammatory CD4+ T cells by antagonizing signaling via the receptor for IL-6. Nature Immunology, 2014, 15, 449-456.	14.5	38
33	Critical contribution of oxidative stress to TNFα-induced necroptosis downstream of RIPK1 activation. Biochemical and Biophysical Research Communications, 2013, 436, 212-216.	2.1	76
34	Tumor necrosis factor receptorâ€essociated factor 5 is an essential mediator of ischemic brain infarction. Journal of Neurochemistry, 2013, 126, 400-414.	3.9	36
35	Differential topical susceptibility to TGFβ in intact and injured regions of the epithelium: key role in myofibroblast transition. Molecular Biology of the Cell, 2013, 24, 3326-3336.	2.1	45
36	Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton. American Journal of Physiology - Cell Physiology, 2013, 304, C115-C127.	4.6	30

#	Article	IF	CITATIONS
37	Shigella IpaH0722 E3 Ubiquitin Ligase Effector Targets TRAF2 to Inhibit PKC–NF-κB Activity in Invaded Epithelial Cells. PLoS Pathogens, 2013, 9, e1003409.	4.7	58
38	Reciprocal expression of MRTF-A and myocardin is crucial for pathological vascular remodelling in mice. EMBO Journal, 2012, 31, 4428-4440.	7.8	83
39	Interleukin-11 Links Oxidative Stress and Compensatory Proliferation. Science Signaling, 2012, 5, ra5.	3.6	87
40	c-FLIP Maintains Tissue Homeostasis by Preventing Apoptosis and Programmed Necrosis. Science Signaling, 2012, 5, ra93.	3.6	66
41	Aberrant accumulation of interleukinâ€10â€secreting neutrophils in TRAF2â€deficient mice. Immunology and Cell Biology, 2012, 90, 881-888.	2.3	6
42	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
43	Crucial role for autophagy in degranulation of mast cells. Journal of Allergy and Clinical Immunology, 2011, 127, 1267-1276.e6.	2.9	120
44	SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature, 2011, 471, 633-636.	27.8	557
45	β-Catenin and Smad3 regulate the activity and stability of myocardin-related transcription factor during epithelial–myofibroblast transition. Molecular Biology of the Cell, 2011, 22, 4472-4485.	2.1	76
46	An unexpected role for autophagy in degranulation of mast cells. Autophagy, 2011, 7, 657-659.	9.1	24
47	Tumor Necrosis Factor Receptor-associated Factor (TRAF) 2 Controls Homeostasis of the Colon to Prevent Spontaneous Development of Murine Inflammatory Bowel Disease. Journal of Biological Chemistry, 2011, 286, 17879-17888.	3.4	31
48	Importin β1 Protein-mediated Nuclear Localization of Death Receptor 5 (DR5) Limits DR5/Tumor Necrosis Factor (TNF)-related Apoptosis-inducing Ligand (TRAIL)-induced Cell Death of Human Tumor Cells. Journal of Biological Chemistry, 2011, 286, 43383-43393.	3.4	58
49	Human lactoferrin activates NFâ€r̂B through the Tollâ€like receptor 4 pathway while it interferes with the lipopolysaccharideâ€stimulated TLR4 signaling. FEBS Journal, 2010, 277, 2051-2066.	4.7	95
50	Fate-determining mechanisms in epithelial–myofibroblast transition: major inhibitory role for Smad3. Journal of Cell Biology, 2010, 188, 383-399.	5.2	113
51	TRAF5 Deficiency Accelerates Atherogenesis in Mice by Increasing Inflammatory Cell Recruitment and Foam Cell Formation. Circulation Research, 2010, 107, 757-766.	4.5	48
52	Fate-determining mechanisms in epithelial–myofibroblast transition: major inhibitory role for Smad3. Journal of Experimental Medicine, 2010, 207, i5-i5.	8.5	1
53	TRAF5 is a critical mediator of in vitro signals and in vivo functions of LMP1, the viral oncogenic mimic of CD40. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17140-17145.	7.1	37
54	TRAF2 Phosphorylation Modulates Tumor Necrosis Factor Alpha-Induced Gene Expression and Cell Resistance to Apoptosis. Molecular and Cellular Biology, 2009, 29, 303-314.	2.3	43

#	Article	IF	CITATIONS
55	NF-κB2 (p100) limits TNF-α–induced osteoclastogenesis. Journal of Clinical Investigation, 2009, 119, 2879-2881.	8.2	11
56	Downregulation of c-FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in tumor cells. Oncogene, 2008, 27, 76-84.	5.9	50
57	A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. EMBO Journal, 2008, 27, 373-383.	7.8	469
58	Rac, PAK and p38 regulate cell contactâ€dependent nuclear translocation of myocardinâ€related transcription factor. FEBS Letters, 2008, 582, 291-298.	2.8	49
59	Fusion of OTT to BSAC Results in Aberrant Up-regulation of Transcriptional Activity. Journal of Biological Chemistry, 2008, 283, 26820-26828.	3.4	13
60	Mitochondrial Extrusion through the Cytoplasmic Vacuoles during Cell Death. Journal of Biological Chemistry, 2008, 283, 24128-24135.	3.4	70
61	Low shear stress preferentially enhances IKK activity through selective sources of ROS for persistent activation of NF-I®B in endothelial cells. American Journal of Physiology - Cell Physiology, 2007, 292, C362-C371.	4.6	64
62	Cell Contact–dependent Regulation of Epithelial–Myofibroblast Transition via the Rho-Rho Kinase-Phospho-Myosin Pathway. Molecular Biology of the Cell, 2007, 18, 1083-1097.	2.1	161
63	TRAF-1, -2, -3, -5, and -6 Are Induced in Atherosclerotic Plaques and Differentially Mediate Proinflammatory Functions of CD40L in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1101-1107.	2.4	97
64	TNF Receptor-Associated Factor 2-Dependent Canonical Pathway Is Crucial for the Development of Peyer's Patches. Journal of Immunology, 2007, 178, 2272-2277.	0.8	14
65	Inflammatory Reactive Oxygen Species-Mediated Hemopoietic Suppression in <i>Fancc</i> -Deficient Mice. Journal of Immunology, 2007, 178, 5277-5287.	0.8	67
66	Identification of TNF-α-responsive NF-κB p65-binding element in the distal promoter of the mouse serine protease inhibitorSerpinE2. FEBS Letters, 2006, 580, 3257-3262.	2.8	8
67	FOG-1 represses GATA-1-dependent FcϵRI β-chain transcription: transcriptional mechanism of mast-cell-specific gene expression in mice. Blood, 2006, 108, 262-269.	1.4	55
68	Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death and Differentiation, 2006, 13, 730-737.	11.2	332
69	An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO Journal, 2006, 25, 5549-5559.	7.8	90
70	The C-terminal Activating Region 2 of the Epstein-Barr Virus-encoded Latent Membrane Protein 1 Activates NF-κB through TRAF6 and TAK1. Journal of Biological Chemistry, 2006, 281, 2162-2169.	3.4	68
71	Nuclear translocation of the SRF co-activator MAL in cortical neurons: role of RhoA signalling. Journal of Neurochemistry, 2005, 94, 169-180.	3.9	36
72	A revival of old players. EMBO Reports, 2005, 6, 126-127.	4.5	3

5

#	Article	IF	CITATIONS
73	NF-κB RelA Phosphorylation Regulates RelA Acetylation. Molecular and Cellular Biology, 2005, 25, 7966-7975.	2.3	402
74	Osteoclast differentiation independent of the TRANCE–RANK–TRAF6 axis. Journal of Experimental Medicine, 2005, 202, 589-595.	8.5	335
75	Tumor Necrosis Factor α (TNFα) Induces the Unfolded Protein Response (UPR) in a Reactive Oxygen Species (ROS)-dependent Fashion, and the UPR Counteracts ROS Accumulation by TNFα. Journal of Biological Chemistry, 2005, 280, 33917-33925.	3.4	346
76	Recruitment of Tumor Necrosis Factor Receptor-associated Factor Family Proteins to Apoptosis Signal-regulating Kinase 1 Signalosome Is Essential for Oxidative Stress-induced Cell Death. Journal of Biological Chemistry, 2005, 280, 37033-37040.	3.4	196
77	Transient and Selective NF-κB p65 Serine 536 Phosphorylation Induced by T Cell Costimulation Is Mediated by IκB Kinase β and Controls the Kinetics of p65 Nuclear Import. Journal of Immunology, 2004, 172, 6336-6344.	0.8	205
78	TNF Receptor-Associated Factor 5 Limits the Induction of Th2 Immune Responses. Journal of Immunology, 2004, 172, 4292-4297.	0.8	54
79	TRAF Family Proteins Link PKR with NF- $\hat{I}^{\circ}B$ Activation. Molecular and Cellular Biology, 2004, 24, 4502-4512.	2.3	147
80	Insufficient p65 phosphorylation at S536 specifically contributes to the lack of NF-ÂB activation and transformation in resistant JB6 cells. Carcinogenesis, 2004, 25, 1991-2003.	2.8	117
81	Effects of PU.1-induced mouse calcium–calmodulin-dependent kinase I-like kinase (CKLiK) on apoptosis of murine erythroleukemia cells. Experimental Cell Research, 2004, 294, 39-50.	2.6	12
82	Signaling crosstalk between NF-κB and JNK. Trends in Immunology, 2004, 25, 402-405.	6.8	67
83	Genome wide analysis of TNF-inducible genes reveals that antioxidant enzymes are induced by TNF and responsible for elimination of ROS. Molecular Immunology, 2004, 41, 547-551.	2.2	26
84	NF-ÂB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO Journal, 2003, 22, 3898-3909.	7.8	460
85	TRAF5 Functions in Both RANKL- and TNFα-Induced Osteoclastogenesis. Journal of Bone and Mineral Research, 2003, 18, 443-450.	2.8	63
86	Phosphorylation of serine 276 is essential for p65 NF-κB subunit-dependent cellular responses. Biochemical and Biophysical Research Communications, 2003, 300, 807-812.	2.1	145
87	The death domain kinase RIP has an essential role in DNA damage-induced NF-kappa B activation. Genes and Development, 2003, 17, 873-882.	5.9	126
88	The Role of Apoptosis Signal-regulating Kinase 1 in Lymphotoxin-Î ² Receptor-mediated Cell Death. Journal of Biological Chemistry, 2003, 278, 16073-16081.	3.4	52
89	Tumor Necrosis Factor-α-induced IKK Phosphorylation of NF-κB p65 on Serine 536 Is Mediated through the TRAF2, TRAF5, and TAK1 Signaling Pathway. Journal of Biological Chemistry, 2003, 278, 36916-36923.	3.4	316
90	TWEAK Induces NF-κB2 p100 Processing and Long Lasting NF-κB Activation. Journal of Biological Chemistry, 2003, 278, 36005-36012.	3.4	279

#	Article	IF	CITATIONS
91	Epstein-Barr virus latent membrane protein 1 activation of NF-ÂB through IRAK1 and TRAF6. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15595-15600.	7.1	120
92	Multiple Pathways of TWEAK-Induced Cell Death. Journal of Immunology, 2002, 168, 734-743.	0.8	160
93	Identification of a Novel Transcriptional Activator, BSAC, by a Functional Cloning to Inhibit Tumor Necrosis Factor-induced Cell Death. Journal of Biological Chemistry, 2002, 277, 28853-28860.	3.4	81
94	Pro-inflammatory effect of TWEAK/Fn14 interaction on human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 2002, 299, 488-493.	2.1	163
95	Lymphotoxin-l² receptor mediates NEMO-independent NF-l̂ºB activation. FEBS Letters, 2002, 532, 45-51.	2.8	75
96	Protection Against Fas-Mediated and Tumor Necrosis Factor Receptor 1-Mediated Liver Injury by Blockade of FADD Without Loss of Nuclear Factor-I®B Activation. Annals of Surgery, 2001, 234, 681-688.	4.2	13
97	Critical Roles of TRAF2 and TRAF5 in Tumor Necrosis Factor-induced NF-ήB Activation and Protection from Cell Death. Journal of Biological Chemistry, 2001, 276, 36530-36534.	3.4	277
98	Essential Role of Nuclear Factor (NF)-κB–Inducing Kinase and Inhibitor of κb (Iκb) Kinase α in Nf-κb Activation through Lymphotoxin β Receptor, but Not through Tumor Necrosis Factor Receptor I. Journal of Experimental Medicine, 2001, 193, 631-636.	8.5	193
99	Molecular Basis for Hematopoietic/Mesenchymal Interaction during Initiation of Peyer's Patch Organogenesis. Journal of Experimental Medicine, 2001, 193, 621-630.	8.5	217
100	Role of Adapter Function in Oncoprotein-mediated Activation of NF-κB. Journal of Biological Chemistry, 1999, 274, 17402-17405.	3.4	204
101	CAST, a Novel CD3ε-binding Protein Transducing Activation Signal for Interleukin-2 Production in T Cells. Journal of Biological Chemistry, 1999, 274, 18173-18180.	3.4	43
102	Ubiquitin-dependent degradation of IÂBÂ is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3859-3863.	7.1	192
103	Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9803-9808.	7.1	183
104	Ku in the Cytoplasm Associates with CD40 in Human B Cells and Translocates into the Nucleus following Incubation with IL-4 and Anti-CD40 mAb. Immunity, 1999, 11, 339-348.	14.3	61
105	ASK1 Is Essential for JNK/SAPK Activation by TRAF2. Molecular Cell, 1998, 2, 389-395.	9.7	625
106	cDNA Cloning, Expression, Subcellular Localization, and Chromosomal Assignment of Mammalian Aurora Homologues, Aurora-Related Kinase (ARK) 1 and 2. Biochemical and Biophysical Research Communications, 1998, 244, 285-292.	2.1	73
107	CD27, a Member of the Tumor Necrosis Factor Receptor Superfamily, Activates NF-κB and Stress-activated Protein Kinase/c-Jun N-terminal Kinase via TRAF2, TRAF5, and NF-κB-inducing Kinase. Journal of Biological Chemistry, 1998, 273, 13353-13358.	3.4	223
108	Tumor Necrosis Factor Receptor–associated Factor 6 (TRAF6) Stimulates Extracellular Signal–regulated Kinase (ERK) Activity in CD40 Signaling Along a Ras-independent Pathway. Journal of Experimental Medicine, 1998, 187, 237-244.	8.5	116

#	Article	IF	CITATIONS
109	Characterization of murine CD70 by molecular cloning and mAb. International Immunology, 1998, 10, 517-526.	4.0	103
110	Differential regulation of lÂB kinase and by two upstream kinases, NF-ÂB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3537-3542.	7.1	512
111	Human TNF Receptor-Associated Factor 5 (TRAF5): cDNA Cloning, Expression and Assignment of the TRAF5 Gene to Chromosome 1q32. Genomics, 1997, 42, 26-32.	2.9	15
112	Tumor Necrosis Factor Receptor-associated Factor (TRAF) 5 and TRAF2 Are Involved in CD30-mediated NFκB Activation. Journal of Biological Chemistry, 1997, 272, 2042-2045.	3.4	193
113	Specific Interaction of Topoisomerase Ilβ and the CD3ε Chain of the T Cell Receptor Complex. Journal of Biological Chemistry, 1996, 271, 6483-6489.	3.4	111
114	TRAF5, an Activator of NF-κB and Putative Signal Transducer for the Lymphotoxin-β Receptor. Journal of Biological Chemistry, 1996, 271, 14661-14664.	3.4	311
115	Expansion of Circulating Î ³ δT Cells in Active Sarcoidosis Closely Correlates with Defects in Cellular Immunity. Clinical Immunology and Immunopathology, 1995, 74, 217-222.	2.0	8
116	Induction of G1 arrest by down-regulation of cyclin D3 in T cell hybridomas Journal of Experimental Medicine, 1995, 182, 401-408.	8.5	33
117	Purification of glutathione S-transferase fusion proteins as a non-degraded form by using a protease-nagativeE.colistrain, AD202. Nucleic Acids Research, 1994, 22, 543-544.	14.5	52