
Midori Matsumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9497728/publications.pdf Version: 2024-02-01

MIDORI MATSUMOTO

#	Article	IF	CITATIONS
1	Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO Journal, 2005, 24, 2741-2752.	7.8	165
2	A sperm-activating peptide controls a cGMP-signaling pathway in starfish spermâ~†. Developmental Biology, 2003, 260, 314-324.	2.0	81
3	Egg and sperm recognition systems during fertilization. Development Growth and Differentiation, 2008, 50, S221-38.	1.5	66
4	ldentification and expression analysis of Drosophilamelanogaster genes encoding β-hexosaminidases of the sperm plasma membrane. Glycobiology, 2006, 16, 786-800.	2.5	55
5	Switching from Asexual to Sexual Reproduction in the Planarian Dugesia ryukyuensis: Bioassay System and Basic Description of Sexualizing Process. Zoological Science, 1999, 16, 291-298.	0.7	45
6	Structure of acrosome reaction-inducing substance in the jelly coat of starfish eggs: A mini review. Biochemical and Biophysical Research Communications, 2012, 425, 595-598.	2.1	33
7	Drpiwi-1 is essential for germline cell formation during sexualization of the planarian Dugesia ryukyuensis. Developmental Biology, 2012, 361, 167-176.	2.0	31
8	Transcriptional pattern of a novel gene, expressed specifically after the point-of-no-return during sexualization, in planaria. Development Genes and Evolution, 2003, 212, 585-592.	0.9	27
9	Switch from Asexual to Sexual Reproduction in the Planarian Dugesia ryukyuensis. Integrative and Comparative Biology, 2003, 43, 242-246.	2.0	27
10	The Dugesia ryukyuensis Database as a Molecular Resource for Studying Switching of the Reproductive System. Zoological Science, 2007, 24, 31-37.	0.7	26
11	Neuropeptides trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish <i>Cytaeis uchidae</i> . Molecular Reproduction and Development, 2013, 80, 223-232.	2.0	26
12	Characterization of the pigment produced by the planarian, Dugesia ryukyuensis. Pigment Cell & Melanoma Research, 2006, 19, 248-249.	3.6	20
13	Characterization of a scavenger receptor cysteine-rich-domain-containing protein of the starfish, Asterina pectinifera: ApSRCR1 acts as an opsonin in the larval and adult innate immune systems. Developmental and Comparative Immunology, 2012, 36, 51-61.	2.3	20
14	The Dr-nanos gene is essential for germ cell specification in the planarian Dugesia ryukyuensis. International Journal of Developmental Biology, 2012, 56, 165-171.	0.6	20
15	Acrosome reaction-related steroidal saponin, Co-ARIS, from the starfish induces structural changes in microdomains. Developmental Biology, 2010, 347, 147-153.	2.0	18
16	Sequence analysis of cDNAs encoding precursors of starfish asterosaps. , 1999, 25, 130-136.		17
17	Comparison of Sexual Reproductive Behaviors in Two Species of Macrobiotidae (Tardigrada:) Tj ETQq1 1 0.784	314 rgBT /0	Overlock 10 Tf
18	Biochemical characterization of inner sugar chains of acrosome reaction-inducing substance in jelly	25	15

coat of starfish eggs. Glycobiology, 2003, 13, 567-580.

Midori Matsumoto

#	Article	IF	CITATIONS
19	Peptide-induced hyperactivation-like vigorous flagellar movement in starfish sperm. Zygote, 2006, 14, 23-32.	1.1	15
20	The identification of d-tryptophan as a bioactive substance for postembryonic ovarian development in the planarian Dugesia ryukyuensis. Scientific Reports, 2017, 7, 45175.	3.3	15
21	Regulation of the starfish sperm acrosome reaction by cGMP, pH, cAMP and Ca2+. International Journal of Developmental Biology, 2008, 52, 523-526.	0.6	13
22	Acrosome reaction is subfamily specific in sea star fertilization. Developmental Biology, 2006, 298, 597-604.	2.0	12
23	Characterization of the Sperm Receptor for Acrosome Reaction-Inducing Substance of the Starfish, Asterias Amurensis. Zoological Science, 2002, 19, 435-442.	0.7	11
24	Asterosap-induced elevation in intracellular pH is indispensable for ARIS-induced sustained increase in intracellular Ca2+ and following acrosome reaction in starfish spermatozoa. Zygote, 2005, 13, 63-71.	1.1	11
25	Effects of 17β-Estradiol and Bisphenol A on the Formation of Reproductive Organs in Planarians. Biological Bulletin, 2011, 220, 47-56.	1.8	10
26	Planarian d-amino acid oxidase is involved in ovarian development during sexual induction. Mechanisms of Development, 2014, 132, 69-78.	1.7	10
27	Na+/Ca2+ exchanger contributes to asterosap-induced elevation of intracellular Ca2+ concentration in starfish spermatozoa. Zygote, 2006, 14, 133-141.	1.1	9
28	Neoblastâ€enriched fraction rescues eye formation in eyeâ€defective planarian â€~menashi' <i>Dugesia ryukyuensis</i> . Development Growth and Differentiation, 2008, 50, 689-696.	1.5	9
29	Conserved sequences of sperm-activating peptide and its receptor throughout evolution, despite speciation in the sea star <i>Asterias amurensis</i> and closely related species. Zygote, 2008, 16, 229-237.	1.1	9
30	Production of asexual and sexual offspring in the triploid sexual planarian <i>Dugesia ryukyuensis</i> . Integrative Zoology, 2009, 4, 265-271.	2.6	9
31	Uneven distribution pattern and increasing numbers of mesenchyme cells during development in the starfish, <i>Asterina pectinifera</i> . Development Growth and Differentiation, 2011, 53, 440-449.	1.5	9
32	Innate sexuality determines the mechanisms of telomere maintenance. International Journal of Developmental Biology, 2013, 57, 69-72.	0.6	9
33	Distribution of Macrobiotus shonaicus Stec, Arakawa & Michalczyk, 2018Â(Tardigrada:) Tj ETQq1 1 0.	784314 rg 0.5	BT ₉ Overlock
34	Switching from asexual to sexual reproduction in the planarianDugesia ryukyuensis. Invertebrate Reproduction and Development, 1999, 36, 153-158.	0.8	8
35	Production of diploid and triploid offspring by inbreeding of the triploid planarian Dugesia ryukyuensis. Chromosoma, 2008, 117, 289-296.	2.2	8
36	Novel conserved structural domains of acrosome reactionâ€inducing substance are widespread in invertebrates. Molecular Reproduction and Development, 2011, 78, 57-66.	2.0	8

#	Article	IF	CITATIONS
37	Triploid planarian reproduces truly bisexually with euploid gametes produced through a different meiotic system between sex. Chromosoma, 2014, 123, 265-272.	2.2	8
38	A comprehensive comparison of sex-inducing activity in asexual worms of the planarian Dugesia ryukyuensis: the crucial sex-inducing substance appears to be present in yolk glands in Tricladida. Zoological Letters, 2018, 4, 14.	1.3	8
39	Characterization of novel genes expressed specifically in the sexual organs of the planarian Dugesia ryukyuensis. International Journal of Developmental Biology, 2007, 51, 345-349.	0.6	8
40	Comparative study of eye defective worm â€~menashi' and regenerating wild-type in planarian,Dugesia ryukyuensis. Pigment Cell & Melanoma Research, 2005, 18, 86-91.	3.6	7
41	Stem cells from innate sexual but not acquired sexual planarians have the capability to form a sexual individual. Molecular Reproduction and Development, 2012, 79, 757-766.	2.0	7
42	Inhibition of <i>Drâ€dut</i> gene causes DNA damage in planarian. Molecular Reproduction and Development, 2018, 85, 188-196.	2.0	7
43	Spermatozoa morphology changes during reproduction and first observation of acrosomal contact in two dioecious species of Macrobiotidae (Tardigrada: Eutardigrada). Zygote, 2021, 29, 42-48.	1.1	7
44	Expression of Nephrin Homologue in the Freshwater Planarian, Dugesia japonica. Acta Histochemica Et Cytochemica, 2014, 47, 303-310.	1.6	6
45	Reproduction of Mesobiotus: Comparison of Morphology and Behavior in the Family Macrobiotidae (Tardigrada: Eutardigrada). Zoological Science, 2021, 38, 444-450.	0.7	6
46	Sexual reproductive behaviours of tardigrades: a review. Invertebrate Reproduction and Development, 2021, 65, 279-287.	0.8	6
47	Description of a model tardigrade Paramacrobiotus metropolitanus sp. nov. (Eutardigrada) from Japan with a summary of its life history, reproduction and genomics. Zootaxa, 2022, 5134, 92-112.	0.5	6
48	Guanylyl cyclase and cGMP-specific phosphodiesterase participate in the acrosome reaction of starfish sperm. Zygote, 2004, 12, 345-355.	1.1	5
49	Starfish Ap DOCK protein essentially functions in larval defense system operated by mesenchyme cells. Immunology and Cell Biology, 2012, 90, 955-965.	2.3	5
50	Reproductive mode and ovarian morphology regulation in chimeric planarians composed of asexual and sexual neoblasts. Molecular Reproduction and Development, 2012, 79, 451-460.	2.0	5
51	DrRad51 is required for chiasmata formation in meiosis in planarian <i>Dugesia ryukyuensis</i> . Molecular Reproduction and Development, 2014, 81, 409-421.	2.0	5
52	Identification of Guanylate Cyclases and Related Signaling Proteins in Sperm Tail from Sea Stars by Mass Spectrometry. Marine Biotechnology, 2008, 10, 564-571.	2.4	4
53	Enzyme kinetics of dUTPase from the planarian Dugesia ryukyuensis. BMC Research Notes, 2019, 12, 163.	1.4	4
54	Mesenchyme cells can function to induce epithelial cell proliferation in starfish embryos. Developmental Dynamics, 2010, 239, 818-827.	1.8	3

Midori Matsumoto

#	Article	IF	CITATIONS
55	Protein kinase A activity leads to the extension of the acrosomal process in starfish sperm. Molecular Reproduction and Development, 2017, 84, 614-625.	2.0	3
56	Species-specificity of the acrosome reaction in starfish. Zygote, 1999, 8, S62-S62.	1.1	2
57	A Chloride Ion Channel in Halocynthia roretzi Hemocytes is Associated with PO Activity but Not Pigmentation During the Contact Reaction. Zoological Science, 2008, 25, 1130-1138.	0.7	2
58	A self-marker-like protein governs hemocyte allorecognition in Halocynthia roretzi. Zoological Letters, 2019, 5, 34.	1.3	2
59	Co-localization of DrPiwi-1 and DrPiwi-2 in the oogonial cytoplasm is essential for oocyte differentiation in sexualized planarians. Cells and Development, 2021, 167, 203710.	1.5	2
60	Acrosome reaction in starfish: signal molecules in the jelly coat and their receptors. Zygote, 1999, 8, S26-S27.	1.1	1
61	Morphological differences in tardigrade spermatozoa induce variation in gamete motility. BMC Zoology, 2022, 7, .	1.0	1
62	Cyclic AMP-dependent PKA phosphorylates starfish sperm proteins during acrosome reaction. Open Life Sciences, 2007, 2, 109-121.	1.4	0
63	Triploid planarian reproduces bisexually with euploid gametes. Molecular Reproduction and Development, 2014, 81, 283-283.	2.0	0
64	In Silico Reconstruction of Sperm Chemotaxis. International Journal of Molecular Sciences, 2021, 22, 9104.	4.1	0
65	Recognition Mechanism of Egg and Sperm Based on Sugar Chains. , 2008, , 278-281.		О